Головна Головна -> Реферати українською -> Інформатика, комп'ютери, програмування -> RSA – алгоритмів кодування з відкритим ключем

RSA – алгоритмів кодування з відкритим ключем

Назва:
RSA – алгоритмів кодування з відкритим ключем
Тип:
Реферат
Мова:
Українська
Розмiр:
17,10 KB
Завантажень:
51
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
Перший алгоритм кодування з відкритим ключем (Public Key Encryption, далі PKE) було запропоновано Вітфілдом Діффі та Мартіном Хелманом у Стендфордському університеті. Вони, а також незалежно від них Ральф Меркл, розробили основні його поняття у 1976 році. Перевага PKE полягає у відсутності потреби секретної передачи ключа.

PKE базується на нерозв’язності проблеми розкладу натурального числа на прості множники.

RSA схему шифрування було запропоновано у 1978 році та названо іменами трьох його винахідників: Роном Рівестом (Ron Rivest), Аді Шаміром (Adi Shamir) та Леонардом Адлеманом (Leonard Adleman). RSA належить до класу алгоритмів кодування з відкритим ключем.

У 80-х роках криптосистема переважно використовувалася для забезпечення секретності та достовірності цифрових даних. У сучасному світі RSA використовується в web – серверах та браузерах для зберігання таємності даних що передаються по мережі, .

Схема RSA базується на обчисленні виразів зі степенями. Відкритий текст шифрується блоками, довжина кожного із яких менша за деяке число n.

Алгоритм генерації ключа

A повинен згенерувати відкритий та секретний ключі:

1. Згенерувати два великих простих числа p та q приблизно однакової довжини;

2. Обчислити n = p * q, fi = (p – 1) * (q – 1);

3. Вибрати натуральне e, 1 < e < fi, взаємно просте з fi;

4. Використовуючи розширений алгоритм Евкліда, розв’язати рівняння

d * e 1 (mod fi).

Відкритий ключ: (n, e). Секретний ключ: d.

Схема шифрування RSA

B шифрує повідомлення m та надсилає A.

1. Шифрування. В робить наступні дії:

а) отримати відкритий ключ (n, e) від А;

б) представити повідомлення у вигляді натурального числа m з проміжку [1..n];

в) обчислити c = me mod n;

г) надіслати шифротекст c до А.

2. Дешифрування. Для отримання повідомлення m із шифротксту c А робить наступні дії:

а) використовуючи секретний ключ d, обчислити m = cd mod n.

Теорема. Шифр c декодується правильно.

Оскільки p та q – прості числа, то  (p * q) =  (n) = (p - 1) * (q - 1), де  – функція Ейлера. З умови вибору ключа d маємо: d * e mod (n) = 1, або d * e =  (n) * k + 1 для деякого натурального k.

cd mod n = (me)d mod n = m (e * d) mod n = m ^ ( (n) * k + 1) mod n = (m  (n) mod n) k * m = 1 k * m = m, оскільки за теоремою Ейлера m (n) mod n = 1.

Означення. RSA системою називають функцію RSAn,e(x) = xe mod n та обернену їй RSA-1n,e(y) = yd mod n, де e – кодуюча, а d – декодуюча експонента, x, y Zn*.

Приклад

1. Оберемо два простих числа: p = 17, q = 19;

2. Обчислимо n = 17 * 19 = 323, fi = (p - 1) * (q - 1) = 16 * 18 = 288;

3. Оберемо e = 7 (НСД(e, fi) = 1) та розв’яжемо рівняння 7 * d  1 (mod 288), звідки d = 247.

Побудовано RSA систему: p = 17, q = 19, n = 323, e = 7, d = 247.

Відкритий ключ: n = 323, e = 7, секретний ключ: d = 247.

1. m = 4. Кодування: 47 mod 323 = 234. Декодування: 234247 mod 323 = 4.

2. m = 123. Кодування: 1237 mod 323 = 251. Декодування: 251247 mod 323 = 123.

Циклічна атака

За відомим шифром c (c = me mod n) злодій, маючи відкритий ключ e та n, бажає знайти повідомлення m. Він починає будувати послідовність чисел

c, ce, , , …

Оскільки обчислення відбуваються в групі Zn*, то елемпнти послідовності знаходяться в межах від 0 до n - 1. Отже існує таке натуральне k, що с = . Враховуючи що c = me mod n, маємо: me = або m = .

Таким чином для знаходження повідомлення m за його шифром c необхідно побудувати послідовність c, ce, , , …, , = c, і взяти її передостаннє число.

Приклад

Розв’язати рівняння: m7 mod 323 = 251.

e = 7, n = 323, c = 251.

k

0 251

1 310

2 47

3 4

4 234

5 123

6 251

З таблиці маємо: c = = 251. Оскільки me = , то m = = 123.

Атака методом осліплення

Припустимо, А має секретний ключ RSA системи, а Z – злодій, який перехопив шифр c і хоче декодувати його. При цьому А відмовляє видати Z вихідний текст m. Тоді Z обирає деяке значення b  Zn*, обчислює c’ = be * c і просить А дешифрувати його. А погоджується дешифрувати c’ своїм секретним ключем d, оскільки зміст повідомлення c’ йому ні про що не говорить і виглядає невинним. Отримавши m’ = c’d mod n, злодій Z обчислює m = m’ / b і отримує шукане m. Шифром m дійсно є c, оскільки me = m’e / be = c’de / be = c’ / be = c.

Така атака можлива, оскільки А не знає повної інформації про шифр c’, який дає йому злодій Z.

Приклад. Нехай А має RSA систему: p =17, q = 19, n = 323, e = 7, d = 247.

Злодій Z перехопив шифр c = 234 і хоче знайти таке m, що m7 = 234 mod 323.

1. Z обирає b = 10  Z323*, обчислює c’ = 107 * 234 mod 323 = 14 і просить А дешифрувати його.

2. A обчислює m’ = 14247 mod 323 = 40 і передає його Z.

3. Z знаходить шукане повідомлення обчислюючи

m = 40 / 10 = 40 * 10-1 = 40 * 97 = 4 mod 323.

Таким чином 47 = 234 mod 323.

Прискорення дешифрування

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: RSA – алгоритмів кодування з відкритим ключем

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок