Головна Головна -> Реферати українською -> Економічна теорія, Політекономія -> Теорія ігор, теорія графів і сіткове планування

Теорія ігор, теорія графів і сіткове планування

Назва:
Теорія ігор, теорія графів і сіткове планування
Тип:
Реферат
Мова:
Українська
Розмiр:
9,26 KB
Завантажень:
86
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5 
Реферат на тему:
Теорія ігор, теорія графів і сіткове планування


Зміст
1. Основні поняття та класифікація ігор
2. Застосування апарату теорії ігор в економіці
3. Теорія графів і сіткове планування
Список використаної літератури


Основні поняття та класифікація ігор
В оптимізаційних моделях вибір рішення здійснювався однією особою. В теорії ігор рішення приймаються кількома учасниками. Значення цільової функції для кожного з них залежить від рішень, що приймаються рештою учасників. Теорія ігор ще має назву теорії конфліктних ситуацій. Прикладами є ситуація "покупець-продавець", карткові та спортивні ігри, олігополістичні моделі. Конфлікт може бути результатом свідомих і стихійних дій різних учасників.
Гравці в теорії ігор — це учасники (суб'єкти) конфлікту. Вони відрізняються іменами або номерами. Можливі дії кожної зі сторін мають назву стратегії, або ходів.
Інтереси сторін представляються функціями виграшу (платежу)для кожного з гравців.
Гра — це модель, яка формалізує змістовний опис конфлікту.
Теорія ігор уперше була системно викладена Дж. фон Нейманом і О. Монгерштерном у 1944 р. В роки Другої світової війни і після неї теорія ігор привернула увагу військових як апарат для дослідження стратегічних рішень. Проте основним застосуванням теорії ігор стала економіка. У 1994 р. Нобелівську премію з економіки одержалиДжон Неш (США), Джон Харсаньї (США), Рейнхард Зельтен (Німеч-чина) за праці у сфері теорії ігор.
Ігри класифікують залежно від обраного критерію: за кількістю гравців, за кількістю стратегій, за властивостями функцій виграшу таза можливостями попередніх переговорів між гравцями.
Залежно від кількості гравців розрізняють ігри з двома, трьома і більше учасниками. Теорію оптимізації, наприклад, можна розглядати як теорію ігор з одним гравцем. Можна досліджувати також ігри з нескінченною кількістю гравців.
За кількістю стратегій розрізняють скінченні та нескінченні ігри. У скінченних іграх кількість можливих стратегій є числом скінченним (підкидання монети — дві стратегії, підкидання кубика — шість стратегій). Стратегії у скінченних іграх називають чистими стратегіями. В нескінченних іграх кількість стратегій є нескінченною.
За властивостями функцій виграшу (платіжних функцій) теорію ігор поділяють на три види. Гра, в якій виграш одного з гравців дорівнює програшу другого, має назву гри з нульовою сумою, або антагоністичної гри. Якщо гравці виграють і програють одночасно та їм вигідно діяти разом, то такі ігри мають назву ігор з постійною різницею. Гра з ненульовою сумою — це гра, в якій наявні конфлікт та узгоджена дія гравців.
За можливістю попередніх переговорів між гравцями розрізняють кооперативні та некооперативні ігри. Кооперативна гра — це гра, в якій до її початку учасники утворюють коаліції і приймають угоди про свої стратегії. Некооперативна гра — гра, в якій гравці не можуть координувати свої стратегії. Прикладом кооперативної гри може стати ситуація лобіювання у парламенті прийняття рішення зацікавлених у ньому учасників шляхом голосування.
Розглянемо гру з двома учасниками, яка має скінченну кількість стратегій. Це дозволить зобразити гру за допомогою платіжної матриці.
Припустімо, кожен гравець має дві стратегії: "Так" або "Ні". Ці стратегії можуть являти економічний вибір, наприклад, підвищувати або знижувати ціну та політичний вибір, наприклад, приймати або не приймати закон. Кожному гравцю у кожній ситуації приписують число, яке виражає ступінь задоволення його інтересів. Це число називається виграшем гравця. Відповідність між набором ситуацій і виграшем гравця називається функцією виграшу. У випадку скінченої гри двох осіб функції виграшу кожного з гравців зручно представляти за допомогою матриці виграшів, де рядки зображують стратегії одного гравця, стовпці — стратегії другого гравця. В клітинках матриці вказують виграші кожного з гравців у кожній з утворених ситуацій. Платіжна матриця відображає виграш кожного гравця за кожної комбінації стратегій, що вибираються.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5 



Реферат на тему: Теорія ігор, теорія графів і сіткове планування

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок