Головна Головна -> Реферати українською -> Економічні теми -> Побудова моделі з автокорельованими залишками

Побудова моделі з автокорельованими залишками

Назва:
Побудова моделі з автокорельованими залишками
Тип:
Реферат
Мова:
Українська
Розмiр:
5,76 KB
Завантажень:
447
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4 
Реферат на тему:
Побудова моделі з автокорельованими залишками


В економетричних дослідженнях часто зустрічаються такі випадки, коли дисперсія залишків є постійною, але спостерігається їх коваріація. Це явище має назву автокореляції залишків.
Автокореляція залишків виникає частіше за все тоді, коли економетрична модель будується на основі часових рядів. Якщо існує кореляція між послідовними значеннями деякої незалежної змінної, то буде спостерігатись і кореляція послідовних значень залишків. Тобто в цьому випадку також порушується гіпотеза, згідно з якою , але при гетероскедастичності змінюється дисперсія залишків при відсутності їх коваріації, а при автокореляції — існує коваріація залишків при незмінній дисперсії.
При автокореляції залишків, як і при гетероскедастичності дисперсія залишків запишеться:
,
але матриця матиме тут зовсім інший вигляд. Запишемо цю матрицю:
.
В даній матриці параметр характеризує коваріацію кожного наступного значення залишків із попереднім. Так, якщо для залишків записати авторегресійну модель першого порядку:
,
то характеризує силу зв’язку величини залишків у період t від величини залишків у період t – 1.
Якщо проігнорувати матрицю при визначенні дисперсії залишків, і для оцінки параметрів моделі застосувати метод 1МНК, то можливі такі наслідки:
1) оцінки параметрів моделі можуть бути незміщеними, але неефективними, тобто вибіркові дисперсії вектора оцінок можуть бути невиправдано великими;
2) статистичні критерії t і F- статистики, які отримані для класичної лінійної моделі, практично не можуть бути використані для дисперсійного аналізу, бо їх розрахунок не враховує наявності коваріації залишків;
3) неефективність оцінок параметрів економетричної моделі, як правило, призводить до неефективних прогнозів, тобто прогнозні значення матимуть велику вибіркову дисперсію.
1. Критерій Дарбіна—Уотсона:
Критерій Дарбіна—Уотсона може приймати значення на множині . Якщо залишки ut є випадковими величинами, тобто не автокорельовані, то значення знаходиться поблизу 2. При додатній автокореляції , при від’ємній .
Значення критерія табульовані на інтервалі , де — нижня межа, — верхня межа. Фактичні значення критерію порівнюються з табличними (критичними) для числа спостережень n і числа незалежних змінних при вибраному рівні довіри . Якщо факт , залишки мають автокореляцію. Якщо факт , приймається гіпотеза про відсутність автокореляції. Якщо DW1,< DW <
< DW2 конкретних висновків зробити не можна.
2. Критерій фон Неймана:
Звідси , при ,. Фактичне значення критерію фон Неймана порівнюється з табличним при вибраному рівні довіри і заданому числі спостережень. Якщо Qфакт < Qтабл , то існує додатня автокореляція.
3. Нециклічний коефіцієнт автокореляції:
.
r*може приймати значення в інтервалі . Від’ємні значення свідчать про від’ємну автокореляцію, додатні — про додатню. Значення, що знаходяться в деякій критичній області біля нуля, свідчать про відсутність автокореляції.
4. Циклічний коефіцієнт автокореляції:
.
Фактичне значення цього критерію порівнюється з табличним для вибраного рівня довіри і довжини ряду спостережень n. Якщо r0факт r0табл, то існує автокореляція. Припускаючи, що
,
циклічний коефіцієнт автокореляції можна записати так:
.
Оцінку параметрів моделі з автокорельованими залишками можна виконувати на основі чотирьох методів:
1) Ейткена;
2) перетворення вихідної інформації;
3) Кочрена—Оркатта;
4) Дарбіна.
Перші два методи доцільно застосовувати тоді, коли залишки описуються авторегресійною моделлю першого ступеня:
.
Ітеративні методи Кочрена—Оркатта і Дарбіна можна застосовувати для оцінки параметрів економетричної моделі і тоді, коли залишки описуються авторегресійною моделлю більш високого ступеня:
;
.
1. Метод Ейткена
Оператор оцінювання цим методом запишеться так:
або
,
де — матриця, обернена до матриці (див. стор. 77);
— матриця, обернена до матриці .
Оскільки в матриці коваріація залишків при наближається до нуля, то матриця, обернена до матриці , буде мати наступного вигляду:
.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4 



Реферат на тему: Побудова моделі з автокорельованими залишками

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок