Головна Головна -> Реферати українською -> Економічні теми -> Шпора з економетрики

Шпора з економетрики

Назва:
Шпора з економетрики
Тип:
Реферат
Мова:
Українська
Розмiр:
415,15 KB
Завантажень:
1394
Оцінка:
 
поточна оцінка 4.7


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 
1.Що таке економетрика

Економетрика – це галузь економічної теорії, яка вивчає моделі економічних систем у формі, що уможливлює перевірку цих моделей на адекватність засобами математичної статистики. Мета економетрики – здійснювати емпіричну перевірку положень економічної теорії, підтверджуючи чи відхиляючи останні. Цим економетрика відрізняється від математичної економіки, зміст якої полягає виключно у застосуванні математики, і теоретичні положення якої не обов’язково потребують емпіричного підтвердження. Економетрика є результатом синтезу економічної теорії, математичної статистики та економічної статистики. Застосування статистичних методів до аналізу економічних даних має давню історію. Стіглер зауважує, що перша «емпірична» крива попиту була опублікована Чарльзом Дейвенентом у 1699 році, а перше сучасне статистичне дослідження попиту було виконано італійським статистиком Родульфо Еніні у 1907 році. Важливим поштовхом до розвитку економетрики було заснування у 1930 році у США Економетричного Товариства і публікація часопису Econometrica (який, до речі, виходить і досі).

Економічні і економетричні моделі

Економічна модель являє собою набір припущень, які приблизно описують поведінку економіки (або сектора економіки). Економетрична модель складається з таких частин: 1). Набір рівнянь поведінки, які виводяться з економічної моделі. Ці рівняння включають деякі змінні, значення яких спостерігаються, а також «збурення», які відтворюють ефект від змінних, не включених до моделі у явному вигляді, та ефект від непередбачуваних подій. 2). Опис імовірнісного розподілу «збурень».

Економетричні моделі мають стохастичний характер. Розглянемо співвідношення між споживанням С та доходом Y у такому вигляді:

С =  + Y + , (В.1)

де  – збурення, або стохастична складова моделі,  і  – невідомі параметри, які можна оцінити за допомогою методів математичної статистики.

Стохастичний характер економетричних моделей дозволяє використовувати теорію статистичних висновків для перевірки цих моделей на адекватність. Перевірка складається з двох етапів: статистичного і економічного. На статистичному етапі ми перевіряємо, чи виконуються вимоги, які накладено на стохастичну складову  при формулюванні моделі. На економічному етапі ми перевіряємо, чи узгоджуються знайдені оцінки параметрів з положеннями економічної теорії. Наприклад, теорія споживання стерджує, що зі зростанням доходу споживання зростає, але не в такій мірі як доход. Звідси випливає, що модель (В.1) коректна, коли в ній 0 <  < 1.

Таким чином, економетричні методи дозволяють не тільки встановлювати кількісні зв’язки між економічними змінними, але й робити висновки про коректність одержаних моделей.

В першому розділі книзі подано огляд результатів стосовно базової економетричної моделі – моделі лінійної регресії, в тому числі теми, які традиційно не включаються до елементарних курсів економетрики: асимптотична теорія, автокореляція внаслідок неправильної специфікації моделі, спатіальна автокореляція, консистентні в умовах гетероскедастичності оцінки коваріаційної матриці для МНК, метод максимальної правдоподібності включаючи оцінювання коваріаційної матриці і три основні принципи перевірки гіпотез.

Розділ 2 присвячений моделям з лаговим змінним. В Розділі розглядаються (більш грунтовно, ніж в елементарних курсах) системи одночасних рівнянь, а в Розділі 4 – моделі з обмеженою залежною змінною і моделі з панельними даними. В Додатку 2. Приведено коротке керівництво користувача програми Eviews.

2. Проста лінійна регресія

Припустимо, що існують дві змінні x i y, де x - незалежна змінна (регресор), y - залежна змінна. Співвідношення між цими змінними позначимо: y = f (x). Будемо розрізняти детерміновані і статистичні співвідношення. При статистичному співвідношенні кожному значенню x відповідає не єдине значення y, але залежну змінну y можливо точно описати у імовірнісних термінах. Припустимо, що функція f(x) лінійна за x, тобто f(x) =  + x, а співвідношення між x та y є статистичним, а саме

y =  + x + , (1.1)

де доданок  називається збуренням або похибкою і має відомий імовірносний розподіл (тобто є випадковою величиною). В рівнянні (1.1)  + x є детермінованим компонентом, збурення  є випадковим або стохастичним компонентом;  і  називаються регресійними коефіцієнтами або параметрами регресії, які потрібно оцінити на основі даних про x та y.

Нехай ми маємо n пар значень . Кожну пару будемо називати спостереженням. Ми можемо записати рівняння (1.1) у вигляді

yi =  + xi + i (1.2)

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 



Реферат на тему: Шпора з економетрики

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок