Головна Головна -> Реферати українською -> Математика -> Частинні похідні. Повний диференціал

Частинні похідні. Повний диференціал

Назва:
Частинні похідні. Повний диференціал
Тип:
Реферат
Мова:
Українська
Розмiр:
31,53 KB
Завантажень:
455
Оцінка:
 
поточна оцінка 3.5


Скачати цю роботу безкоштовно
Означення. Нехай задано функцію z=f(x,y) і нехай деяку точку з області визначення цієї функції (x,y). Якщо аргумент x отримує приріст dx, а аргумент y – приріст dy, то вираз dz=f(x+dx,y+dy)-f(x,y) називають повним приростом функції f(x,y) .

Означення. Функція f(x,y) називається неперервною у точці (x0,y0), якщо

.

Попередні означення легко переносяться із випадку двох змінних на випадок функції від n (n>2) змінних.

Означення. Величини dxz=f(x+dx,y)-f(x,y) та dyz=f(x,y+dy)-f(x,y) називаються частинними приростами функції f(x,y) .

Означення. Частинною (частковою) похідною від функції f(x,y) за аргументом x називається границя

Частинну (часткова) похідну від функції f(x,y) за аргументом y визначаєють аналогічно.

Для частинних похідних від функції f(x,y) використовують такі позначення :

fx(x,y); zx;

fy(x,y); zy;

Частинні похідні та задають напрями дотичних до поверхні z = f(x,y). Варто пригадати, що звичайна похідна f(x) = задає напрям дотичної до кривої y = f(x).

Приклади

1. Нехай

2. Нехай Q=K0.6L0.4. Знайдемо відповідні частинні похідні

(Випуск продукції зростає зі збільшенням затрат як капіталу, так і праці).

3. Побудуємо другі частинні похідні від функції Q=K0.6L0.4 .

(Граничний випуск продукції спадає зі збільшенням як затрат капіталу, так і затрат праці).

4. Знайдемо змішані частинні похідні другого порядку :

Теорема: Якщо функція z = f(x,y) та її похідні zx , zy , zxy і zyx неперервні в точці (x,y) та деякому околі цієї точки, то zxy = zyx .

Означення. Повним диференціалом dz від функції z =f(x,y) називають суму її частинних диференціалів :

Приклад.

Тоді

Поняття повного диференціала має ряд застосувань. По-перше, величина dz є приростом (по z) дотичної площини до поверхні z =f(x,y), аналогічно до того, як диференціал dy від функції f(x) є приростом ординати дотичної до кривої y = f(x) (рис. 6.9,а - б).

По-друге, за допомогою диференціала можна оцінити похибку функції від багатьох змінних, якщо відомі похибки аргументів:

де - похибки аргументів.

По-третє, з використанням диференціала можна знаходити похідні від функцій, заданих неявно.

Приклад.

Нехай та. Потрібно оцінити похибку функції.

Маємо

Нехай потрібно знайти похідну у тому випадку, коли функція задана неявно у вигляді . Узявши від функції F(x,y) повний диференціал, отримуємо

звідки

Приклад.

Знайти похідну якщо

Маємо

звідки

За допомогою неявних похідних в економіці визначають граничні норми (частки, квоти, rate) заміни.

Приклад. Виробнича функція має вигляд Q=10x1+15x2, де x1 та x2 -затрати ресурсів (факторів виробництва). Потрібно знайти граничну норму технологічної заміни ресурсу x2 на ресурс x1 (під граничною нормою технологічної заміни ресурсу x2 на ресурс x1 в економіці розуміють додаткову кількість ресурсу x1, яка компенсує зменшення ресурсу x2 на одиницю). Очевидно, що ця гранична норма (MRTS) технологічної заміни в неперервному випадку є похідною від змінної x1 за змінною x2 за умови сталого випуску Q:

Отже, у разі зменшення кількості ресурсу x2 на одиницю та одночасного збільшення ресурсу x1 на 1,5 одиниці випуск Q залишиться не змінниться (рис. 6.10).

Приклад. Виробнича функція має вигляд Q=K0,6L0,4 (функція Кобба-Дугласа). Гранична норма (частка) технологічної заміни праці капіталом у цьому випадку с

Як бачимо із останньої формули, значення MRTS (marginal rate of technological substitution) для функції Кобба-Дугласа залежить від співвідношення K/L.

Завантажити цю роботу безкоштовно



Реферат на тему: Частинні похідні. Повний диференціал

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок