Головна Головна -> Реферати українською -> Математика -> Автоматизована обробка інформації складних систем проекційними методами

Автоматизована обробка інформації складних систем проекційними методами

Назва:
Автоматизована обробка інформації складних систем проекційними методами
Тип:
Реферат
Мова:
Українська
Розмiр:
54,10 KB
Завантажень:
59
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
Реферат на тему:

Автоматизована обробка інформації складних систем проекційними методами

Найбільше розробленим методом розв’язання проблем у рамках автоматизації обробки інформації в складних інформаційних системах є ве-ликі розріджені системи лінійних алгебраічних рівнянь (ВР СЛАР). Та в практиці розробки автоматизованих систем обробки інформації, які підляга-ють аналізу, існує галявина, що впливає на розробку та створення алгоритмів і програмного забезпечення за-для розв’язання крайових і динамічних бага-томірних польових задач, що мають місце при рішенні складних науково-інженерних проблем, розпізнавання образів, вилучення знань тощо. З цією ціллю необхідно розглянути питання як теоретичного обгрунтування методів дискретизації, так і їхньої практичної реалізації з урахуванням: порядку апроксимації рішення і збіжності обчислювальних алгоритмів. Серед множини існуючих методів розв’язання зазначеного класу задач особливе місце займають проекційні методи. Завдяки своїй достатній універсальності, а також – низці гідностей, проекційні методи завойовують все більшу популярність [1]. Найбільш відомі з них – це методи Рітца і Гальоркіна [2]. Застосування їх [3] дозволяє зберегти в наближеній задачі важливі властивості вихідної крайової задачі, зокрема, симетрії, позитивної певності, властивостей теплицевих матриць та ін. Для проекційних методів розв’язання добре розроблена теорія дослідження похибок наближених рішень.

Як відомо [1], вимога завдання в просторі скалярного добутку, норми і властивостей аддитивності й однорідності призводить до визначення гільбертова простору. Розглянемо в абстрактному гільбертовом просторі Н із визначеним скалярним добуткомом (*,*) операторне рівняння

A * x = b, (1)

де А – лінійний оператор;

b – заданий елемент простору H;

x – невідомий елемент.

Нехай DAÌH – область визначення оператора A, а HNÌDA – підпростір простору Н з обмеженою розмірністю. Наближеним рішенням рівняння (1) назвемо такий елемент xÎHN, для якого невязка (Ax – b) ортогональна будь-якому елементу yÎHN, тобто

(Ax – b, y) = 0 , yÎHN . (2)

Це співвідношення, так само як і співвідношення (1), дозволяє одержати систему алгебраїчних рівнянь для визначення наближеного рішення. Дійсно, нехай j1, j2, ... , jN, – базис у просторі НN. Наближене рішення будем шукати у виді

,

де ck (k=1, 2, ... , N) – невідоме число.

Підставляючи це уявлення x у (2) і вважаючи y послідовно рівним j1, j2, ... , jN, одержимо систему для визначення ck, тобто:

i=1, 2, ... , N. (3)

Описаний процес пошуку наближеного рішення рівняння (3) називається методом Гальоркіна. Функції j1, j2, ... , jN називаються координатними функціями проекційного методу [1].

У проекційних методах стало традиційним в якості координатних функцій використовувати алгебраїчні і тригонометричні поліноми. Проте в багатьох задачах виявилося, що системи лінійних алгебраїчних рівнянь, що утворюються, є такі, що їхнє розв”язання на ЕОМ стає практично неможливим через те, що похибки округлення в ході обчислень «забивають» правильне рішення. Ця обставина виявилась головною перешкодою в застосуванні проекційних методів для автоматизації складних задач.

За останні десятиріччя відношення до проекційних методів змінилося. Широкий інтерес до них був викликаний створенням нового методу – методу кінцевих елементів. Цей метод можна розглядати як результат синтезу двох методів – метода кінцевих різниць і метода Гальоркіна. Цей метод знайшов особливо широке застосування при розрахунках на тривкість і тривалість деталей, конструкцій і споруджень.

За підвищення складності задачі і точності її рішення припадає розраховуватися. Одним з таких розрахунків є необхідність рішення великих систем лінійних алгебраїчних рівнянь (СЛАР), що виникають у процесі застосування варіаційних методів. Особливостями одержуваних СЛАР є: розрідженість, позитивна певність, симетричність (не завжди) і великий порядок.

На сьогоднішній день розроблено декілька достатньо потужних методів розв”язання великих розріджених СЛАР, що враховують ті або інші особливості матриць: симетричність, позитивну певність, теплицеві матриці та ін. Такими методами, зокрема, є так названі методи рівнобіжних перетинів, неявної схеми деревоподібної розбивки та ін. Роззлянемо метод перетинів з погляду методу мінімізації заповнення матриці.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Автоматизована обробка інформації складних систем проекційними методами

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок