Головна Головна -> Реферати українською -> Математика -> Диференціал

Диференціал

Назва:
Диференціал
Тип:
Реферат
Мова:
Українська
Розмiр:
6,49 KB
Завантажень:
169
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3 
Диференціал

План

Диференціал функції.

Геометричний зміст диференціала.

Лінеаризація функції.

Диференціал складної функції.

Повний диференціал функції декількох змінних.

Достатні умови диференційованості функції.

Рівняння дотичної площини до поверхні і нормалі.

Інваріантність форми диференціала.

Диференціювання функцій, заданих параметрично.

Неявні функції, їх диференціювання.

1. Диференціал функції

1.1 Означення диференційованої функції

Означення. Функція називається диференційованою в точці , якщо її приріст в цій точці можна зобразити в такому вигляді:

(6.48)

де - число, а прямує до нуля, коли приріст прямує до нуля.

Означення. Функція називається диференційованою в точці , якщо її повний приріст в цій точці можна зобразити в такому вигляді:

(6.49) де

- числа; і - нескінченно малі при (при ).

Теорема. Для того щоб функція в точці була диференційованою, необхідно і достатньо, щоб для неї в цій точці існувала скінчена похідна . При виконанні цієї умови рівність (6.48) має місце, коли стала дорівнює саме цій похідній:

(6.50)

Наслідок. Якщо функція в точці має (скінчену) похідну, то в цій точці функція необхідно неперервна.

Дійсно, із (6.50) зрозуміло, що з умови випливає .

Для функції двох змінних умова диференційованості жорстокіша, ніж існування частинних похідних в точці.

Теорема (необхідна умова диференційованості). Функція диференційована в точці , неперервна в цій точці і має в ній частинні похідні за обома змінними.

Теорема (достатня умова диференційованості). Якщо функція має частинні похідні за змінними і якщо ці частинні похідні неперервні в цій самій точці , то функція диференційована в цій точці.

Зауваження. Функція (всякого числа змінних), диференційована в кожній точці деякої області, називається диференційованою в цій області.

1.2 Диференціал

Диференціал функції однієї змінної . Зазначимо, що доданки в рівності (6.50) відіграють неоднакову роль. Так, другий додаток при є величина вищого порядку малості, ніж ,

тоді як перший доданок , якщо і , є величина одного порядку малості з . Крім того, другий доданок в рівності (6.50) при і є величина вищого порядку малості, ніж перший,

Отже, перший доданок в рівності (6.50) є головною частиною приросту функції.

Означення. Добуток називається диференціалом функції в точці і позначається символом або ,

, . (6.51)

Диференціалом аргументу називається його приріст, тобто вважають . Тоді формула для диференціала функції набирає вигляду

,

або

(6.52)

Користуючись співвідношенням (6.52), складемо таблицю для диференціалів від елементарних функцій:

1. , .

2. , .

3. , .

4. , .

5. , .

6. , .

7. , .

8. , .

9. , .

10. , .

11. , .

12. , .

13. , .

14. , .

15. , .

16. , .

17. , .

18. , .

Властивості диференціала. Якщо і - диференційовані функції, то безпосередньо із визначення диференціала і властивостей похідних маємо такі властивості диференціала:

1) (),

2) ,

3) ,

4) .

Геометричний зміст диференціала. Нехай графік диференційованої функції має вигляд, зображений на рис. 6.6 (крива ).

Візьмемо на кривій точки і . У точці проведемо дотичну до кривої . Тоді з трикутника знайдемо довжину відрізка :

або

. (6.53)

Рівність (6.53) і характеризує геометричний зміст диференціала: диференціал функції дорівнює приросту ординати дотичної до графіка цієї функції в розглядуваній точці.

Рис.6.6

Механічний зміст диференціала. Припустимо, що матеріальна точка рухається за відомим законом

де - диференційована функція при деякому значенні часу . Тоді функція має диференціал

,або .

Добуток виражає шлях, який точка проходить за час , рухаючись із сталою швидкістю .

Отже, механічне тлумачення диференціала функції таке: диференціал функції виражає той шлях, який точка пройшла б за час , якби вона рухалася прямолінійно і рівномірно зі сталою швидкістю .

6.6.3. Повний диференціал функції двох змінних

Означення повного диференціала. Нехай функція в деякій області неперервна і має частинні похідні та .

Виберемо в цій області довільну точку . Надамо приросту обом аргументам, тобто візьмемо точку

. Для приросту

одержуємо такий вираз:

(6.54)

При і останні два доданки є нескінченно малими вищого порядку, оскільки і . Перших два доданки складають головну частину у виразі повного приросту .

Означення. Головна, лінійна відносно і частина приросту функції називається повним диференціалом функції двох змінних і позначається або :

. (6.55)

(Легко бачити, що це означення приводить до введеного вище поняття диференціала функції однієї змінної, якщо замість розглядати функцію ).

Приклад. Знайти повний диференціал функції .

Р о з в ' я з о к.

В будь-який точці .

Зауваження. Означення повного диференціала легко узагальнюється на випадок диференційованої функції будь-якого числа змінних.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3 



Реферат на тему: Диференціал

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок