Головна Головна -> Реферати українською -> Математика -> Скалярний добуток двох векторів, його властивості. Векторний добуток, його властивості. Змішаний добуток трьох векторів

Скалярний добуток двох векторів, його властивості. Векторний добуток, його властивості. Змішаний добуток трьох векторів

Назва:
Скалярний добуток двох векторів, його властивості. Векторний добуток, його властивості. Змішаний добуток трьох векторів
Тип:
Реферат
Мова:
Українська
Розмiр:
6,73 KB
Завантажень:
476
Оцінка:
 
поточна оцінка 3.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
Скалярний добуток двох векторів, його властивості. Векторний добуток, його властивості. Змішаний добуток трьох векторів

План

Скалярний добуток векторів.

Властивості скалярного добутку.

Скалярний добуток векторів, заданих координатами.

Векторний добуток векторів.

Властивості векторного добутку.

Векторний добуток векторів, заданих координатами.

Змішаний добуток векторів.

Змішаний добуток векторів, заданих координатами.

1. Скалярний добуток двох векторів

Скалярним добутком двох векторів і називається добуток довжин цих векторів на косинус кута, утвореного векторами, тобто

Тут символ означає кут між векторами. Нехай .

Тоді тобто скалярний добуток будь-якого вектора на одиничний вектор визначає величину проекції вектора на напрямок одиничного вектора.

Скалярний добуток двох векторів дорівнює добутку довжини одного з них на проекцію іншого на напрям першого.

Приклад. Під дією даної сили тіло перемістилося у даному напрямку на величину . Обчислити роботу сили (рис.2.12).

Рис.2.12

Р о з в ' я з о к. Розкладемо силу на суму двох доданків : . Очевидно, робота суми сил дорівнює сумі складових сил. Але робота сили , перпендикулярної до напрямку шляху, дорівнює нулю, а робота сили , паралельної шляху, дорівнює добутку модуля сили на довжину шляху:

.

Але , тому остаточно одержимо

.

Скалярний добуток позначається одним з трьох способів:

.

Основні властивості скалярного добутку.

10.

Якщо то Якщо то або або або а у нульового вектора напрям - довільний.

20. - випливає зразу з означення .

30.

40..

Нехай Тоді

,

бо добутки взаємно перпендикулярних одиничних векторів дорівнюють нулю, а добутки паралельних однаково спрямованих одиничних векторів дорівнюють одиниці.

Отже,

, (2.9)

тобто дорівнює сумі добутків однойменних координат векторів.

Якщо , то з (2.9) маємо

(2.10)

Тому (2.11)

З формули (2.10) маємо . (2.12)

Формулами (2.10) і (2.12) визначаються відповідно квадрат довжини вектора і квадрат віддалі між точками і .

Якщо вектор -одиничний, то його проекціями на осі координат і відповідно є і . Тому з формули (2.11) маємо

. (2.13)

Оскільки , то

. (2.14)

Якщо у формулі (2.14) вектор ,то одержимо косинус кута, що його утворює вектор з віссю :

Аналогічно матимемо косинуси кутів і вектора з осями відповідно і:

Приклад. Визначити кут між векторами і , якщо вектор

перпендикулярний до вектора , а вектор перпендикулярний до вектора .

Р о з в ' я з о к. Із перпендикулярності векторів і маємо

.

Аналогічно.

Отже, маємо систему рівнянь:

Віднявши від першого рівняння друге, одержимо

Тоді

Отже,

2. Векторний добуток двох векторів

Як відомо із шкільного курсу фізики, моментом сили відносно точки називається добуток сили на довжину плеча (плече сили - це відрізок від точки до лінії дії сили ), тобто . Розглянемо силу , момент якої відносно точки треба знайти. Очевидно, момент буде повністю визначений, якщо будуть задані:

1) числові значення моменту, що дорівнює ;

2) площина, у якій лежать сила і точка ;

3) напрям, в якому діє сила.

Всі ці три характеристики можна виразити за допомогою одного вектора , якщо 1) ; 2) ( - площина); 3) спрямуємо вектор так, щоб цей напрямок був деяким однозначним чином зв'язаний з напрямом сили (рис. 2.13 а,б). У ролі такого зв'язку

між напрямами виберемо “правило свердлика “: проведемо вектор так, щоб обертання головки свердлика збігалося з напрямом дії сили, а поступальний рух свердлика збігався з напрямом вектора . Тоді, у випадку, показаному на рис. 2.13б - донизу. Вектор є вектором моменту сили. Якщо ввести в розгляд вектор (рис.2.13), то, враховуючи, що

Рис. 2.13а Рис.2.13б

, матимемо числове значення вектора :

а напрямок його визначається за “правилом свердлика”. Вектор можна паралельно перенести в точку . Добуток можна трактувати як площу паралелограма, побудованого на векторах і .

Розглянемо впорядковану трійку векторів яка віднесена до спільного початку. Вектори утворюють праву трійку, якщо з кінця вектора видно найкоротший поворот від вектора до вектора проти стрілки годинника. В противному випадку, якщо цей поворот видно за стрілкою годинника, то вектори утворюють ліву трійку.

Означення. Векторним добутком вектора на вектор

називається такий третій вектор , довжина якого чисельно

дорівнює площі паралелограма, побудованого на векторах і , перпендикулярний до площини цих векторів і спрямований так, що вектори утворюють праву трійку.

З означення випливає, що довжина вектора становить

.

Векторний добуток на позначається символом

або .

Отже, в розглянутому прикладі про момент сили можна записати: або , а напрямок вектора , якщо

поглянути на напрямки обертання головки свердлика, відповідає тому, який визначається означенням векторного добутку.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Скалярний добуток двох векторів, його властивості. Векторний добуток, його властивості. Змішаний добуток трьох векторів

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок