Головна Головна -> Реферати українською -> Математика -> Комплексні числа Означення уявної одиниці. Розширення множини дійсних чисел. Поняття про комплексне число

Комплексні числа Означення уявної одиниці. Розширення множини дійсних чисел. Поняття про комплексне число

Назва:
Комплексні числа Означення уявної одиниці. Розширення множини дійсних чисел. Поняття про комплексне число
Тип:
Реферат
Мова:
Українська
Розмiр:
61,86 KB
Завантажень:
133
Оцінка:
 
поточна оцінка 4.5


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
У багатьох розділах математики та її застосуваннях неможливо обмежитися розглядом лише дійсних чисел. Вже досить давно під час розв’язування різних задач виникла потреба добувати квадратний корінь з від’ємних чисел. Але чисел, які при піднесенні до квадрата дають від’ємні числа, тоді не знали і тому вважали, що квадратні корені в від’ємних чисел не існують, тобто задачі, які до них приводять, не мають розв’язків. Зокрема, так було під час розв’язання квадратних рівнянь з від’ємним дискримінантом, наприклад:

.

Тому природно постало питання про розширення множини дійсних чисел, приєднанням до неї нових так, щоб у розширеній множині, крім чотирьох арифметичних дій – додавання, віднімання, множення і ділення (за винятком ділення на нуль), можна було виконувати дію добування кореня. Це питання було успішно розв’язане лише у ХІХ ст.

Оскільки існує вимога, щоб у новій числовій множині рівняння мало розв’язок, необхідно ввести деяке нове число, вважаючи його розв’язком цього рівняння. Число, квадрат якого дорівнює –1, позначають буквою і і називають уявною одиницею (і – перша буква латинського слова imaginarius – уявний). Підкреслимо, що рівність приймається за означенням і не доводиться. До нової множини мають належати числа виду (добуток дійсного числа на уявну одиницю) і числа виду (сума дійсного числа і добутку дійсного числа на уявну одиницю).

Отже, нова множина чисел повинна містити всі числа виду . Числа виду , де і - довільні дійсні числа, а - уявна одиниця називають комплексними. Слово “комплексний” означає складений. Число називають дійсною частиною комплексного числа , а вираз - уявною.

Число називають коефіцієнтом при уявній частині.

Два комплексних числа і = рівні між собою тоді і тільки тоді, коли і , тобто коли рівні їх дійсні частини і коефіцієнти при уявних частинах.

Поняття “більше” і “менше” для комплексних чисел не має смислу. Ці числа за величиною не порівнюють.

Важливим є поняття про спряжені комплексні числа. Числа та , дійсні частини яких рівні, а коефіцієнти при уявних частинах рівні за модулем, але протилежні за знаком, називають спряженими. Можна сказати простіше: числа і , які відрізняються лише знаком уявної частини, називаються спряженими.

Геометрична інтерпретація комплексних чисел

Вивчаючи комплексні числа, можна використовувати геометричну термінологію і геометричні міркування, якщо встановити взаємно однозначну відповідність між множиною комплексних чисел і множиною точок координатної площини. Цю відповідність можна встановити так. Кожному комплексному числу поставимо у відповідність точку координатної площини, тобто точку, абсциса якої дорівнює дійсній частині комплексного числа, а ордината – коефіцієнту уявної частини. Кожній точці координатної площини поставимо у відповідність комплексне число (мал. 1). Очевидно, що така відповідність є взаємно однозначною. Вона дає можливість інтерпретувати комплексні числа як точки деякої площини, на якій вибрано систему координат. Координатну площину називають при цьому комплексною, вісь абсцис – дійсною віссю, бо на ній розміщені точки, що відповідають комплексним числам , тобто відповідають дійсним числам. Вісь ординат називається уявною віссю – на ній лежать точки, які відповідають уявним комплексним числам .

Мал. 1

Зручною є також інтерпретація комплексного числа як вектором (див. рис. 1). Поставимо у відповідність кожному комплексному числу вектор з початком у точці і кінцем у точці . Ви знаєте, що такий вектор називають радіусом-вектором, а його проекції на осі координат є координатами вектора. Отже, можна сказати, що геометричним зображенням комплексного числа є радіус-вектор з координатами і . Відповідність між множиною комплексних чисел, з одного боку, і множиною точок або векторів площини, з іншого, дає змогу комплексні числа називати точками або векторами і говорити, наприклад, про вектор або про точку .

На малюнку 2 вектори є відповідно геометричними зображеннями комплексних чисел.

Мал. 2

Обидва способи геометричного зображення комплексних чисел рівноцінні, бо будь-якій точці А координатної площини відповідає певний радіус-вектор . Навпаки, кожному радіус-вектору відповідає певна точка – кінець радіуса-вектора.

Тригонометрична форма запису комплексних чисел

Запис числа у вигляді називається алгебраїчною формою запису комплексного числа. Крім алгебраїчної форми використовуються й інші форми запису комплексних чисел – тригонометрична і показникова. Розглянемо тригонометричну форму запису, а для цього введемо поняття про модуль і аргумент комплексного числа.

Мал. 3

Модуль комплексного числа. Побудуємо радіус-вектор , що є геометричним образом комплексного числа (мал. 3). Модулем комплексного числа називається значення . Число перетворюється на нуль тільки за умов , .

Модуль комплексного числа позначається символом . Отже, .

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Комплексні числа Означення уявної одиниці. Розширення множини дійсних чисел. Поняття про комплексне число

Схожі роботи:


BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок