Головна Головна -> Реферати українською -> Математика -> Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність

Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність

Назва:
Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність
Тип:
Реферат
Мова:
Українська
Розмiр:
48,33 KB
Завантажень:
94
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
План.

1. Означення закономірного ряду.

2. Теорема Коші.

3. Абсолютна та умовна збіжність.

Л-ра: Методичні вказівки до вивчення теми “Ряди”. Укладачі: В.О.Борисенко, В.В.Левчук, В.С.Мартиненко, В.Д.Подільчук. КДТЕУ. К, 1992 р. ст. 16-19.

Теорема. Якщо в ряді з додатними членами загальний член, починаючи з певного значення п, задовольняє нерівність де q – стале число, менше за одиницю, то ряд збігається.

Коли ж навпаки, починаючи з певного значення п, маємо то ряд розбігається.

Доведення. У першому випадку маємо, починаючи з певного значення п,

Отже, збіжність ряду й тут безпосередньо встановлюється порівнянням із спадною геометричною прогресією, знаменник якої q. Варто зауважити, що нерівність

характеризує при цьому “швидкість” збіжностей даного ряду порівняно з геометричною прогресією.

В другому випадку матимемо з певного моменту , отже, ряд напевне, розбігається, бо навіть основна необхідна умова збіжності не виконується.

Наслідок. Якщо існує , то при r < 1 ряд напевне збігається. Випадок r = 1 і тут взагалі є сумнівний.

Доведення.

Взявши u тут якесь число q, проміжне між r та 1 ( ), ми з певного моменту матимемо – в першому випадку:

Отже, ряж збігається; а в другому: отже, ряд розбігається.

Часто питання про збіжність ряду, що має члени як додатні, так і від’ємні, можна звести до питання про збіжність знакододатного ряду. Розглянемо таку теорему.

Теорема. Ряди напевне збігається, якщо збігається ряд

Доведення. Для кожного можна знайти таке , при якому для і при буде:

Але тоді й поготів

Але це й доводить теорему.

Означення. Збіжний ряд називається абсолютно збіжним. Якщо збігається також і ряд

Розглянемо, наприклад, ряд

Він ні знакододатний, ні знакозмінний. Ряд

є знакододатний. Порівнюючи його з рядом

маємо

Ряд (3) збіжний, як ряд Діріхле-Рімана при , отже, збіжним є ряд (2). Тоді за доведеною теоремою і за означенням ряд (1) є абсолютно збіжним.

Оскільки ряд, члени якого – абсолютні значення членів будь-якого ряду є знако-додатний, то, очевидно, щоб дослідити, чи будь-який ряд є абсолютно збіжним, ми можемо використовувати ознаки збіжності, виведені для знакододатних рядів, замінивши у відповідних виразах члени даного ряду їх абсолютними значеннями. Так, ознака Даламбера збіжності ряду запишеться тоді у вигляді ознака Коші – у вигляді: і т.п.

Означення. Якщо ряд (*) збіжний, а ряд розбіжний, то даний ряд (*) називається умовно збіжним.

Отже, ряд

умовно збіжний,

Так само ряд

умовно збіжний, бо ряд

є ряд Діріхле-Рімана, в якому

Знакочергуючі ряди. Ознака Лейбніца.

План.

1. Означення знакочергуючого ряду.

2. Ознака Лейбніца.

3. Оцінка залишку знакочергуючого ряду, збіжного за ознакою Лейбніца.

Л-ра: Методичні вказівки до вивчення теми “Ряди”. Укладачі: В.О.Борисенко, В.В.Левчук, В.С.Мартиненко, В.Д.Подільчук. КДТЕУ. К, 1992 р. ст. 16-19.

Означення. Знакозмінними рядами називаються ряди виду:

де - додатні числа.

Теорема Лейбніца. Якщо в знакозмінному ряді абсолютне значення загального члена монотонно прямує до нуля (тобто до того ж ), тоді знакозмінний ряд збігається, причому сума його має числове значення, проміжне між нулем та першим членом

Доведення. Розглянемо спочатку частинну суму парного порядку , причому запишемо її в двох різних виглядах:

1 .

Помічаємо, що чим більше К, тим більше пар, але кожна пара додатна, отже, монотонно зростає при збільшенні К.

2 З другого боку

Бачимо, що < , для всіх значень k > 1. Отже, обмежена зверху.

Зіставляючи обидва факти, приходимо до висновку, що величина монотонна і разом з тим обмежена змінна, том вона, прямує до певної скінченої границі , при чому ця границя, очевидно, більша за а1 – а2 і не перевищує а1:

а1 – а2 < < а1.

Отже, напевне 0 < < а1.

Розглядаючи вже тепер частинну суму непарного порядку +1, маємо:

= + а2к+1.

Отже,

Остаточно приходимо до висновку, що існує єдина границя:

(0 < S < a1),

коли індекс n – будь-яке натуральне число як парне, так і непарне, що доводить теорему.

Наслідок. За умовою теореми Лейбніца остаточна S – Sn = rn менша за абсолютним значенням, ніж абсолютне значення першого з відкинутих членів:

і має знак цього члена.

Доведення. Маємо:

Ряд в останніх дужках сам по собі є знакозмінний і задовольняє теорему Лейбніца, тому

причому

Отже, якщо перший з відкинутих членів непарний, то представляє S з недостачею. Похибка має знак плюс. Якщо ж перший відкинутий член – парний, то , представляє S з надлишком. Похибка має знак мінус. В обох випадках, як бачимо, похибка має знак першого відкинутого члена і менша за абсолютним значенням, ніж абсолютне значення першого з відкинутих членів.

Диференціювання та інтегрування

степеневих рядів.

План.

1. Знаходження сум степеневих рядів використовуючи почленне диференціювання та інтегрування.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок