Головна Головна -> Реферати українською -> Математика -> Послідовності випадкових величин. Граничні теореми

Послідовності випадкових величин. Граничні теореми

Назва:
Послідовності випадкових величин. Граничні теореми
Тип:
Реферат
Мова:
Українська
Розмiр:
70,17 KB
Завантажень:
164
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
Послідовність незалежних випробовувань з двома наслідками.Будемо вважати, що проведено n –незалежних випробовувань, в кожному із яких можна спостерігати: успіх з ймовірністю p та невдачу з ймовірністю q (p+q=1) .Нехай - число успіхів при n випробуваннях. Тоді

m=0,1,…,n;

При великих значеннях n та m обчислення ймовірністі Bp= (n, m) по формулі (1 ) викликає затруднення. Виникає необхідність в асимтотичних формулах, які дозволяють з достатньою точністю визначити ці ймовірності.

Теорема 1. Локальна гранична теорема. Позначемо = np, = npq,Тоді, якщо при, де с- деяка стала, то

Теорема2. Якщо = np , де с –довільна стала, то для всіх m

3.1 Закон великих чисел

Визначення. Говорять, що послідовність випадкових величин , по ймовірності збігається до випадкової величини , якщо для довільного

Р { }=0 . Збіжність по ймовірності послідовності до позначають так : =plim , або .

Нехай послідовність випадкових величин , для яких існують М . Законом великих чисел називають теореми, які стверджують, що різниця

збігається до нуля по ймовірності.

Задача. Довести, коли існує M 2 i М =а , то ( нерівність Чебишова ).

57

Теорема Чебишова. Нехай { }- послідовність незалежних випадкових величин, існують D i D при всіх n. Тоді

Наслідок. Нехай 1, 2 ,…, n,…- послідовність незалежних випадкових величин така, що М =а, D , n=1,2,…

Тоді для кожного

.

Цей частковий випадок теореми Чебишова дає обгрунтуваня правилу середнього арифметичного в теорії обробки результатів вимірювання. Припустимо, що необхідно виміряти деяку фізичну величину а. Повторюючи вимірювання n раз в одинакових умовах, спостерігач одержує результати вимірювань 1, 2 ,…, n [1]. Якщо спостереження не мають систематичної помилки, тобто М =а, то згідно сформульованому вище наслідку,

Теорема Хінчина. Нехай { }- послідовність незалежних одинаково розподілених величин, які мають скінчене математичне сподівання М =а. Тоді для кожного

.

Теорема Маркова. Нехай випадкові величини 1, 2 ,…, n як завгодно залежні. Для виконання ( * ) достатньо, щоб

при.

Теорема Бернуллі. Нехай маємо послідовність випробовувань, в кожному з яких можуть бути два наслідки- успіх У ( з ймовірністю р ) або невдача Н ( з ймовірністю q=1-p) незалежно від наслідків інших випробувань. Утворимо послідовність випадкових величин наступним чином. Нехай к =1, якщо в к-тому випробовуванні був успіх к =0, якщо в к-тому випробовуванні наступила невдача. Тоді { }- є послідовність незалежних одинаково розподілених випадкових величин M к=p, D к=pq. Випадкова величина представляє собою частоту появи успіху в перших n випрбуваннях. Оскільки для послідовності { }-виконані умови теореми Чебишова, то із теореми Чебишова одержуємо наступне твердження.

Теорема Бернуллі. Для довільного Р{ при n .

Зміст цього твердження полягає в тому, що ведене нами визначення ймовірності відповідає інтуїтивному розумінню ймовірності як границі частоти.

3.2 Посилений закон великих чисел.

Послідовність випадкових величин { ,n }- збігається з ймовірністю 1 до величини , якщо ймовірність всіх тих точок , для яких не існує,

або , дорівнює нулю, тобто якщо Р{{ .

Розглянемо послідовність випадкових величин k з скінченими математичними сподіваннями. Теореми, які стверджують, що різниця збігається з ймовірністю 1 до нуля, називається посиленим законом великих чисел. Нижче приводиться дві теореми про посилений закон великих чисел, обидві вони доведені.

А. М. Колмагоровим.

Теорема 1. Нехай n – послідовність незалежних випадкових величин, для яких М , D визначені. Якщо

, то Р { - )=0}=1.

Наслідок ( теорема Бореля ). Припустимо, що розглядається послідовність незалежних випробувань, в кожному з яких з’являеться успіх У з ймовірністю р або невдача Н з ймовірністью q=1-p. Нехай - число успіхів при n випробуваннях. Тоді Р{ }=1.

Це випливає з того, що = , де k- послідовність незалежних випадкових величин введених при доведенні теореми Бернуллі.

Теорема 2. Нехай - послідовність незалежних одинаково розподілених величин з скінченим математичним сподіванням М =а. Тоді

3.3 Центральна гранична теорема.

Теорема. Нехай 1, 2 ,…, n,…- послідовність незалежних випадкових величин з скінченною дисперсією ( і

.

Тоді при n для довільного x

Це один з самих видатних результатів теорії ймовірностей: при широких припущеннях відносно суми великої кількості незалежних малих випадкових доданків має місце розподіл, який близький до нормального ( гаусівського).

Наслідок. Інтегральна гранична теорема Муавра- Лапласа.

Проводяться незалежні випробовування. При кожному випробовуванні з’являється успіх з ймовірністю р ( 0 або невдача з ймовірністю q. Нехай число успіхів при n- випробуваннях. Тоді при а

Для доведення достатньо ввести випадкові величини

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Послідовності випадкових величин. Граничні теореми

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок