Головна Головна -> Реферати українською -> Математика -> Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.

Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.

Назва:
Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.
Тип:
Реферат
Мова:
Українська
Розмiр:
54,38 KB
Завантажень:
640
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.

1. Комплексні числа

1.1. Алгебраїчна форма комплексного числа

Як відомо, в області дійсних чисел не можна добути корінь парного степеня з від’ємного числа, бо не існує такого числа, квадрат якого був би від’ємним. Тому вже квадратне рівняння в області дійсних чисел не має коренів, якщо його дискримінант від’ємний. Вказані обставини приводять до необхідності введення нових чисел так, щоб усі дії, властиві для дійсних чисел, були правильними і для нових чисел, але при цьому, щоб і дія добування кореня була можливою без будь-яких обмежень.

Очевидно, що перш за все треба ввести таке число, щоб його квадрат дорівнював –1. Позначивши його через , одержимо Звідси. Величина називається умовною одиницею. Сам термін “уявне число” виник історично і зберігався до цього часу, хоч тепер уже ясно, що ці числа цілком реальні. Користуючись ознакою уявної одиниці, можна скласти таблицю степенів числа :

де - ціле додатне число.

Числа вигляду, де - дійсне число, називаються уявними числами, а числа вигляду - комплексними, де i – дійсні числа.

Побудуємо дві взаємно перпендикулярні осі, одну з яких назвемо уявною, а іншу – дійсною. Відклавши на дійсній осі відрізок довжиною , а на уявній – відрізок довжиною , можна побудувати точку (рис. 8.1), яка і є зображенням комплексного числа. При маємо зображення дійсного числа на осі (дійсна вісь), а при маємо зображення чисто уявного числа на осі (уявна вісь). Площина називається комплексною. Кожній точці на комплексній площині відповідає одне й тільки одне комплексне число , і навпаки, кожному комплексному числу відповідає одна й тільки одна точка комплексної площини. Комплексне число можна також зображати як вектор

Інакше кажучи, між комплексними числами й відповідними точками (векторами) комплексної площини існує взаємно однозначна відповідність.

Із геометричної інтерпретації комплексного числа випливає, що числа і рівні тоді і тільки тоді,коли і.

Приклад. За яких умов комплексні

Р о з в ’ я з о к. З умови рівності двох комплексних чисел одержуємо:

Розв’язавши цю систему рівнянь, знаходимо і . Отже, задані комплексні числа рівні тоді й тільки тоді, коли 1) і

Розглянемо дії над комплексними числами, заданими в алгебраїчній формі.

а). Додавання і віднімання. Сумою двох комплексних чисел і називається число , а їх різниця запишеться так: .

Додавання і віднімання комплексних чисел здійснюється за правилами додавання і віднімання векторів.

б). Множення двох комплексних чисел і здійснюється так само, як і множення двочленів:

Числа вигляду і називаються комплексно

спряженими. Їх добуток є дійсне число

в). Ділення. Нехай потрібно число поділити на число,

Отже, в результаті ділення двох комплексних чисел одержуємо комплексне число.

г). Піднесення комплексного числа до цілого додаткового степеня здійснюється так само, як піднесення двочлена до степеня з наступною зміною степенів за формулами, де ціле додатне число.

д). Добування кореня порівняно легко можна здійснити лише для квадратного кореня. Для коренів вищих степенів здійснить це важко, якщо обмежуватися комплексними числами, заданими в алгебраїчній формі.

Приклад. Добути квадратний корінь із числа .

Р о з в ’ я з о к. Нехай

Тоді , де і – дійсні числа. Звідси

Розв’язавши цю систему рівнянь , одержимо

Дії додавання і множення комплексних чисел володіють переставним (комутативним), сполучним (асоціативним) і розподільчим (дистрибутивним) законами.

Приклади.

10.

20.

30.

40.

50.

1.2. Тригонометрична форма комплексного числа

Сполучимо початок координат з точкою . Довжина цього відрізка називається модулем комплексного числа, а кут , що утворює цей відрізок з додатним напрямом осі називається аргументом комплексного числа (рис.8.1). Очевидно, що аргумент дійсного числа дорівнює , а уявного -

Запис комплексного числа у вигляді називають алгебраїчним, а у вигляді (8.2) - тригонометричним.

Приклади. Записати в тригонометричній формі комплексні числа:

Маємо:

Розглянемо дії з комплексними числами, заданими в тригонометричній формі.

а). Дії додавання і віднімання комплексних чисел, заданих у тригонометричній формі, можуть бути виконані так само, як і в алгебраїчній формі.

б).Множення.

Отже, в разі множення комплексних чисел, заданих у тригонометричній формі, їх модулі перемножуються, аргументи додаються.

в). Ділення.

тобто при діленні модуль діленого ділиться на модуль дільника, аргумент дільника віднімається від аргументу діленого.

г). Піднесення до цілого додатного степеня. Користуючись правилом множення комплексних чисел, легко довести методом повної математичної індукції, що

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок