Головна Головна -> Реферати українською -> Математика -> Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування

Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування

Назва:
Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування
Тип:
Реферат
Мова:
Українська
Розмiр:
34,34 KB
Завантажень:
66
Оцінка:
 
поточна оцінка 3.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
План

• Задачі, що приводять до поняття визначеного інтеграла

• Визначений інтеграл як границя інтегральної суми

• Формулювання теореми існування

ВИЗНАЧЕИЙ ІНТЕГРАЛ

1. Деякі задачі, що приводять до поняття визначеного інтеграла

Розглянемо на простому конкретному прикладі задачу обчислення площі фігури, обмеженої неперервною кривою , заданої на інтервалі , двома ординатами в точках і , та віссю , (рис.1) , за тією схемою , про яку йшлося в п.8.3.1 за обчислення моменту інерції тіла , де досить чітко просліджувалися три етапи . Розглядувану фігуру далі називатимемо криволінійною трапецією .

Етап 1. Розбиття фігури (рис. 9.1) на ряд вузьких смужок, паралельних осі . Площу кожної із смужок можна обчислювати наближено, замінюючи її або прямокутником, верхня основа якого проходить через точку на кривій і знаходиться не вище за криву, або трапецією , обмеженою зверху хордою , що сполучає кінці відрізку кривої .

Етап 2. Сума площ усіх прямокутників або трапецоїдних смужок дасть наближене значення площ криволінійної трапеції. Очевидно, що ця площа буде обчислена тим точніше, чим меншою буде ширина кожної смужки .

Етап 3. Для точного обчислення площі криволінійної трапеції слід обчислити границю вказаної суми, коли ширина кожної смужки прямує до нуля . Точне значення площі криволінійної трапеції позначають символом , який називається визначеним інтегралом у проміжку від до функції і вперше введений Й.Бернуллі . Функція називається підінтегральною , а вираз підінтегральним. Знак нагадує розтягнуту літеру S , першу літеру латинського слова “summa” .Числа і – границі інтегрування (нижня і верхня відповідно ), – підінтегральна змінна . Аналогічно можна підійти і до способу обчислення довжини дуги (див. Рис.9.1) . З’єднуючи точки поділу кривої на частинки хордами , можна вважати, що сума довжин усіх хорд наближено дорівнюватиме довжині дуги . Якщо позначити ширину кожної смужки через , а різницю основ трапеції через , то довжини хорд дорівнюватимуть . Тоді сума довжин усіх хорд виразиться таким чином : і наближено дорівнюватиме довжині дуги Для обчислення точного значення довжини дуги слід перейти до границі цієї суми , коли всі прямують до нуля . Якщо - диференційована , то і при цьому теж прямуватиме до нуля . В результаті переходу до вказаної границі одержимо довжину дуги у вигляді

Рекомендується одержати для обчислення, наприклад, масу кривої , знаючи , що її лінійна густина де - неперервна функція, статичний момент фігури відносно осі , вважаючи, що густина фігури стала, наприклад, дорівнює одиниці, момент інерції тієї самої фігури відносно осі за того самого припущення щодо густини.

Обчислюючи масу дуги , будемо вважати , що в межах маленького відрізка дуги густина маси мало змінюється , тобто її можна вважати сталою . Обчислюючи статичний момент фігури відносно осі будемо мати на увазі , що статичним моментом матеріальної точки відносно осі називається добуток маси точки на її віддаль від осі й що за сталої густини масу прямокутної смужки можна зосередити в її центрі і вважати точкою .

Обчислюючи момент інерції фігури відносно осі , слід вважати, що момент інерції вузенької смужки відносно осі, їй паралельної, дорівнює добутку маси смужки на квадрат її віддалі від осі. Розв’язуючи ці завдання, нескінченно малими величинами, порядок яких більший за одиницю, можна нехтувати. Звичайно, в цьому пункті всі викладки проводилися на інтуїтивному рівні , без належних обгрунтувань. Усі необхідні обгрунтування можуть бути наведені після детального вивчення даного розділу.

2. Визначений інтеграл як границя інтегральної суми

В п.9.1 йшлося про невизначений інтеграл у зв’язку з обчисленням площі криволінійної трапеції, а також розв’язуванням деяких задач на основі складання інтегральних сум. Але там мова йшла про випадок, коли підінтегральна сума на всьому проміжку інтегрування була невід’ємною.

У даному випадку на підінтегральну функцію це обмеження не накладатиметься, але метод побудови інтегральних сум залишиться таким самим, що й раніше. Для прикладу розглянемо фігуру, обмежену графіком функції , зображеним на рис.9.2 віссю і двома ординатами в точках, де (ця фігура заштрихована).

Так само, як це було і раніше, інтервал розіб’ємо на частинок точками

(точки інтервалу не обов’язково повинні збігатися з точками ) ) і побудуємо суму

де , яка називається інтегральною. Але ця сума вже не буде площею фігури з тієї простої причини, що на інтервалах відповідні члени суми будуть від’ємними, а на інших – додатними. Перейшовши в цій сумі до границі, коли , одержимо

Ті самі міркування, що і в п. 9.1, привели до поняття визначеного інтеграла.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок