Головна Головна -> Реферати українською -> Математика -> Лінійні різницеві рівняння зі сталими коефіцієнтами. Задача Коші

Лінійні різницеві рівняння зі сталими коефіцієнтами. Задача Коші

Назва:
Лінійні різницеві рівняння зі сталими коефіцієнтами. Задача Коші
Тип:
Реферат
Мова:
Українська
Розмiр:
153,37 KB
Завантажень:
51
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
План

1. Лінійні однорідні диференціальні рівняння

зі сталими коефіцієнтами

1.1. Розв’язування систем однорідних рівнянь

з сталими коефіцієнтами методом Ейлера.

1.2. Розв’язок систем однорідних рівнянь

зі сталими коефіцієнтами матричним методом

1.3. Властивості розв’язків лінійних неоднорідних систем

2. Задача Коші

Використана література

1. Лінійні однорідні диференціальні рівняння

зі сталими коефіцієнтами

Система диференціальних рівнянь вигляду

де - сталі величини, називається лінійною однорідною системою з сталими коефіцієнтами. У матричному вигляді вона записується

1.1. Розв’язування систем однорідних рівнянь

з сталими коефіцієнтами методом Ейлера.

Розглянемо один з методів побудови розв’язку систем з сталими коефіцієнтами.

Розв’язок системи шукаємо у вигляді вектора

Підставивши в систему диференціальних рівнянь, одержимо

Скоротивши на, і перенісши всі члени вправо, запишемо

Отримана однорідна система лінійних алгебраїчних рівнянь має розв’язок тоді і тільки тоді, коли її визначник дорівнює нулю, тобто

Це рівняння, може бути записаним у векторно-матричній формі

і воно називається характеристичним (чи віковим) рівнянням. Розкриємо його

Алгебраїчне рівняння -го ступеня має -коренів. Розглянемо різні випадки.

1. Всі корені характеристичного рівняння (власні числа матриці ) дійсні і різні. Підставляючи їх по черзі в систему алгебраїчних рівнянь

одержуємо відповідні ненульові розв’язки системи

що являють собою власні вектори, які відповідають власним числам.

У такий спосіб одержимо - розв’язків

Причому оскільки -різні а - відповідні їм власні вектори, то розв’язки - лінійно незалежні, і загальний розв’язок системи має вигляд

Або у векторно - матричної формі запису

де - довільні сталі.

2. Нехай пара комплексно спряжених коренів. Візьмемо один з них, наприклад . Комплексному власному числу відповідає комплексний власний вектор

і, відповідно, розв’язок

Використовуючи залежність , перетворимо розв’язок до вигляду:

І, як випливає з властивості 4 розв’язків однорідних систем, якщо комплексна функція дійсного аргументу є розв’язком однорідної системи, то окремо дійсна і уявна частини також будуть розв’язками, тобто комплексним власним числам відповідають лінійно незалежні розв’язки

3. Якщо характеристичне рівняння має кратний корінь кратності, тобто , то розв’язок системи рівнянь має вигляд

.

Підставивши його у вихідне диференціальне рівняння і прирівнявши коефіцієнти при однакових степенях, одержимо - рівнянь, що містять -невідомих. Тому що корінь характеристичного рівняння має кратність , то ранг отриманої системи . Уводячи довільних сталих і розв’язуючи систему, одержимо

1.2. Розв’язок систем однорідних рівнянь

зі сталими коефіцієнтами матричним методом

Досить універсальним методом розв’язку лінійних однорідних систем з сталими коефіцієнтами є матричний метод. Він полягає в наступному. Розглядається лінійна система з сталими коефіцієнтами, що записана у векторно-матричному вигляді

Робиться невироджене перетворення , де вектор - нова невідома векторна функція. Тоді рівняння прийме вигляд

Для довільної матриці завжди існує неособлива матриця , що приводить її до жорданової форми, тобто , де - жорданова форма матриці . І система диференціальних рівнянь прийме вигляд

Складемо характеристичне рівняння матриці

Алгебраїчне рівняння -го ступеня має коренів. Розглянемо різні випадки.

1. Нехай - дійсні різні числа. Тоді матриця має вигляд

І перетворена система диференціальних рівнянь розпадається на - незалежних рівнянь

Розв’язуючи кожне окремо, отримаємо

Або в матричному вигляді

Звідси розв’язок вихідного рівняння має вигляд . Для знаходження матриці треба розв’язати матричне рівняння

де - жорданова форма матриці . Якщо матрицю записати у вигляді

то для кожного з стовпчиків , матричне рівняння перетвориться до

Таким чином, у випадку різних дійсних власних чисел матриця являє собою набір - власних векторів, що відповідають різним власним числам.

2. Нехай - комплексний корінь. Тоді відповідна клітка Жордана має вигляд

а перетворена система диференціальних рівнянь

Неважко перевірити, що розв’язок отриманої системи диференціальних рівнянь має вигляд

Або в матричному вигляді

Таким чином, комплексно-спряженим власним числам відповідає розв’язок де

3. Нехай - кратний корінь, кратності , тобто і йому відповідають лінійно незалежних векторів. Тоді клітка Жордана, що відповідає цьому власному числу, має вид

І перетворена підсистема, що відповідає власному числу , розпадається не дві підсистеми

Розв’язок першої знаходиться з використанням зазначеного в першому пункті підходу. Розглянемо другу підсистему. Запишемо її в координатному вигляді

Розв’язок останнього рівняння цієї підсистеми має вигляд

.

Підставимо його в передостаннє рівняння. Одержуємо

.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Лінійні різницеві рівняння зі сталими коефіцієнтами. Задача Коші

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок