Системи лінійних диференціальних рівнянь. Загальні положення
Назва:
Системи лінійних диференціальних рівнянь. Загальні положення
Система диференціальних рівнянь, що записана у вигляді
називається лінійною неоднорідною системою диференціальних рівнянь. Система
називається лінійною однорідною системою диференціальних рівнянь. Якщо ввести векторні позначення
то лінійну неоднорідну систему можна переписати у вигляді
а лінійну однорідну систему у вигляді
Якщо функції неперервні в околі точки , то виконані умови теореми існування та єдиності розв’язку задачі Коші, і існує єдиний розв’язок
системи рівнянь, що задовольняє початковим даним
1. Властивості розв’язків лінійних однорідних систем
Властивість 1. Якщо вектор є розв’язком лінійної однорідної системи, то і , де - стала скалярна величина, також є розв’язком цієї системи.
Дійсно, за умовою
оскільки дорівнює нулю вираз в дужках. Тобто є розв’язком однорідної системи.
Властивість 2. Якщо дві векторні функції , є розв’язками однорідної системи, то і їхня сума також буде розв’язком однорідної системи.
Дійсно, за умовою
тому що дорівнюють нулю вираз в дужках, тобто є розв’язком однорідної системи.
Властивість 3. Якщо вектори , … , є розв’язками однорідної системи, та і їхня лінійна комбінація з довільними коефіцієнтами також буде розв’язком однорідної системи.
Дійсно, за умовою
тому що дорівнює нулю кожний з доданків, тобто є розв’язком однорідної системи.
Властивість 4. Якщо комплексний вектор з дійсними елементами є розв’язком однорідної системи, то окремо дійсна та уявна частини є розв’язками системи.
Дійсно за умовою
Розкривши дужки і зробивши перетворення, одержимо
А комплексний вираз дорівнює нулю тоді і тільки тоді, коли дорівнюють нулю дійсна і уявна частини, тобто
що і було потрібно довести.
Визначення 1. Вектори називаються лінійно залежними на відрізку , якщо існують не всі рівні нулю сталі, такі, що при .
Якщо тотожність справедлива лише при , то вектори лінійно незалежні.
Визначення 2. Визначник, що складається з векторів
називається визначником Вронського.
Теорема 1. Якщо векторні функції лінійно залежні, то визначник Вронського тотожно дорівнює нулю.
Доведення. За умовою існують не всі рівні нулю, такі, що при .
Або, розписавши покоординатно, одержимо
А однорідна система має ненульовий розв’язок тоді і тільки тоді, коли визначник дорівнює нулю, тобто
Теорема 2. Якщо розв’язки - лінійної однорідної системи лінійно незалежні, то визначник Вронського не дорівнює нулю в жодній точці .
Доведення. Нехай, від супротивного, існує точка і .
Тоді система однорідних алгебраїчних рівнянь
має ненульовий розв’язок . Розглянемо лінійну комбінацію розв’язків з отриманими коефіцієнтами
Відповідно до властивості 4, ця комбінація буде розв’язком. Крім того, як випливає із системи алгебраїчних рівнянь, для отриманих : , . Але розв’язком, що задовольняють таким умовам, є . І в силу теореми існування та єдиності ці два розв’язки збігаються, тобто при , або
або розв’язки лінійно залежні, що суперечить умові теореми.
Таким чином, у жодній точці , що і було потрібно довести.
Теорема 3. Для того щоб розв’язки були лінійно незалежні, необхідно і достатно, щоб у жодній точці.
Доведення. Випливає з попередніх двох теорем.
Теорема 4. Загальний розв’язок лінійної однорідної системи представляється у вигляді лінійної комбінації п -лінійно незалежних розв’язків.
Доведення. Як випливає з властивості 3, лінійна комбінація розв’язків також буде розв’язком. Покажемо, що цей розв’язок загальний, тобто завдяки вибору коефіцієнтів можна розв’язати будь-яку задачу Коші або в координатній формі:
Оскільки розв’язки лінійно незалежні, то визначник Вронського відмінний від нуля. Отже, система алгебраїчних рівнянь
має єдиний розв’язок.
Тоді лінійна комбінація
є розв’язком поставленої задачі Коші. Теорема доведена.
Властивість 1. Максимальне число незалежних розв’язків дорівнює кількості рівнянь.
Це випливає з теореми про загальний розв’язок системи однорідних рівнянь, тому що будь-який інший розв’язок може бути представлений у вигляді лінійної комбінації лінійно незалежних розв’язків.
Визначення. Матриця, складена з будь-яких -лінійно незалежних розв’язків, називається фундаментальною матрицею розв’язків системи.
Якщо лінійно незалежними розв’язками будуть
буде фундаментальною матрицею розв’язків.
Як випливає з попередньої теореми загальний розв’язок може бути представлений у вигляді
де - довільні сталі. Якщо ввести вектор, то загальний розв’язок можна записати у вигляді .
2. Формула Якобі
Нехай - лінійно незалежні розв’язки однорідної системи, - визначник Вронського. Обчислимо похідну визначника Вронського
Оскільки для похідних виконується співвідношення
то після підстановки одержимо
Розкривши кожний з визначників, і з огляду на те, що визначники з однаковими стовпцями дорівнюють нулю, одержимо
Реферат на тему: Системи лінійних диференціальних рівнянь. Загальні положення