Головна Головна -> Реферати українською -> Фізика -> Верифікація закону всесвітнього тяжіння

Верифікація закону всесвітнього тяжіння

Назва:
Верифікація закону всесвітнього тяжіння
Тип:
Реферат
Мова:
Українська
Розмiр:
114,62 KB
Завантажень:
342
Оцінка:
 
поточна оцінка 4.2


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3 
Встановлені за результатами астрономічних спостережень руху планет закони [8] Й. Кеплера відіграли основну роль у відкритті І. Ньютоном формули [8] для сили всесвітнього тяжіння:

. (1)

Тут та – маси точкових тіл, – вектор, який вказує на їхнє взаємне розташування в просторі, а – ґравітаційна стала. Взаємні впливи інших планет призводять до порушення [8] законів Кеплера. Знаходження форми траєкторії планет було тим пробним каменем, на якому відточувалися теорії ґравітації.

1. Рух об’ємного тіла в центральному полі

Нехай точкова маса нерухома в інерційній системі відліку. Тоді початок системи координат можна розмістити в . У процесі розрахунків, розглядаючи лише геометричні аспекти задачі, напруженість ґравітаційного поля зручніше характеризувати не посиланням на масу , яка це поле створює, а її ґравітаційним радіусом [11]:

. (2)

Таким чином, формулу (1) можна переписати у вигляді:

. (3)

Тут – фундаментальна швидкість, а – одиничний вектор уздовж радіус-вектора . Використання в (3) ґравітаційного радіуса має технічний характер і зовсім не пов’язане з підходами ЗТВ [11].

Нехай у ґравітаційному полі маси рухається точкове тіло масою . Якщо зв’язана з масою система відліку є інерційною, рівняння динаміки цієї матеріальної точки матиме вигляд [10]:

. (4)

Помноживши (4) векторно на , отримуємо рівняння обертального руху маси навколо точки :

. (5)

Можна довести [8], що ґравітаційне поле сферично-симетричного тіла збігається з полем точкової маси, поміщеної в центрі симетрії, а самі тіла взаємодіють за тими ж законами, що й точкові. Однак, якщо для матеріальної точки перехід від рівняння (4) до (5) не викликає жодних заперечень, то для об’ємного тіла згадана процедура виглядає сумнівною. Справді, рівняння (4) описує поступальних рух, а (5) – обертальний. Поступальний же рух по орбіті навколо силового центра , згідно з теоремою Л.Ейлера, складається [1] з двох обертальних рухів – орбітального та власного. При поступальному русі частота обертання навколо власної осі з точністю до знака збігається з частотою орбітального руху. Таким чином, рівняння (4) та (5) для об’ємного тіла нееквівалентні, бо (5) не враховує зумовленого орбітальним рухом кутового прискорення тіла навколо власної осі.

Пояснимо, як узгодити рівняння (4) поступального руху та рівняння обертального руху. Позначивши орбітальний момент імпульсу тіла через , а власний – через , згідно з законом збереження

(6)

у замкненій системі, матимемо:

. (7)

Застосовуючи для конкретизації характеристик обертального руху тіла навколо власної осі основний закон динаміки [8] обертального руху, отримаємо вираз для моменту сили (фіктивного), який діє на тіло:

. (8)

Тут – момент інерції тіла відносно власної осі. Для однорідного сферичного тіла діаметром

, де . (9)

Породжуючою причиною моменту сили є орбітальний рух, тому при переході від (4) до рівняння динаміки обертального руху вираз (5) необхідно доповнити моментом сили згідно з (7) та (8):

. (10)

Напрям момента сили перпендикулярний до площини орбіти, тому остання і надалі залишатиметься плоскою. Таким чином, при розгляді законів руху об’ємного тіла в центральному полі необхідно записувати [3]:

; (11)

(12)

Інтегруючи співвідношення (12), одержимо вираз:

. (13)

Для планет Сонячної системи числове значення співмножника близьке до одиниці (найбільше його відхилення від одиниці є в Юпітера – ), і його реєстрація практично неможлива. Зате вплив розміру планет накопичується у низці ефектів, наприклад, призводить до повороту перицентра орбіти.

Перейшовши в (11) від параметра до полярного кута , заміною змінних

(14)

із використанням зв’язку (13) рівняння (11) зведемо до вигляду:

. (15)

Будемо шукати розв’язок (15) за умови . У лінійному наближенні, приймаючи що [3]

, (16)

із (15) отримаємо рівняння гармонічного осцилятора

, (17)

відносна частота коливань якого відрізняється від одиниці. Фактично це означає, що перицентр орбіти об’ємної планети зміщується в прямому напрямі з частотою:

. (18)

Частота набагато менша від . Порівняємо з усередненою частотою повертання перицентра, формулу для якої дає ЗТВ [9]:

. (19)

Обчислене для планет Сонячної системи відношення

(20)

наведене в табл.1.

Таблиця 1

Планета Меркурій Земля Юпітер Сатурн

0,008 0,024 0,57 0,23

Із табл.1 видно, що для планет-гігантів складова швидкості зміщення перицентра орбіти, пов’язана з неточковістю планети, співмірна з обчисленою методами ЗТВ для точкових тіл. Навіть для Меркурія зміщення в 0", 4 за 100 років, як це випливає з (18), вже піддається реєстрації сучасними приладами.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3 



Реферат на тему: Верифікація закону всесвітнього тяжіння

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок