Головна Головна -> Реферати українською -> Фізика -> Електромагнітні хвилі у речовині

Електромагнітні хвилі у речовині

Назва:
Електромагнітні хвилі у речовині
Тип:
Реферат
Мова:
Українська
Розмiр:
48,78 KB
Завантажень:
174
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2 
Вільні і зв’язані заряди. Діелектрики. Електрична поляризація. [4]

Магнетики. Намагніченість. [4]

Струми провідності, намагнічування і поляризації. [4]

Рівняння Максвелла для середовища. Матеріальні рівняння. Граничні умови. [4]

Основні поняття і закони

Якщо речовина знаходиться е зовнішньому електричному полі, то під дією поля змінюється характер руху електронів і ядер, що входять до складу молекул речовини. В результаті цього вона, залишаючись електронейтраль-ною, може поляризуватися, тобто переходити у такий стан, коли кожний елемент її об’єму володіє відмінним від нуля електричним дипольним моментом . Кількісною мірою поляризації речовини є вектор поляризації - (дипольний момент одиниці об’єму:

, (4.1)

де n – кількість диполів з моментами , що містяться у об’ємі V речовини.

Існування дипольних моментів у об’ємі речовини приводить до появи електричного поля. З вигляду потенціалу цього поля, згідно з (1.31 – 32), можна зробити висновок, що існування ненульового вектора поляризації рівносильне існуванню в речовині зв’язаних зарядів густина яких

,

або у іншій формі

. (4.2)

З цього випливає, що зв’язані заряди відсутні у середовищах, молекули яких не поляризуються (наприклад, у провідниках), або поляризація яких однорідна. Неоднорідність поляризації середовища рівносильна появі у ньому струмів поляризації, густина яких, згідно закону збереження заряду, визначається швидкістю зміни вектора поляризації:

. (4.3)

Дія зовнішнього магнітного поля на речовину проявляється у впорядкуванні магнітних моментів атомів зовнішнім полем. У результаті цього речовина може намагнічуватись, тобто переходити у стан, який характеризується наявністю відмінного від нуля магнітного моменту у кожного елемента її об’єму. Кількісною мірою намагнічування речовини є її намагніченість (магнітний момент одиниці об’єму) – вектор

, (4.4)

де n – кількість атомів з магнітними моментами , що містяться у об’ємі V речовини. Із співвідношень (2.14) і (2.11) випливає, що намагнічування речовини еквівалентне появі у ній струмів намагніченості, густина яких

. (4.5)

Наявність зв’язаних зарядів, струмів поляризації і струмів намагніченості призводить до того, що характеристики поля у речовині відрізняються від характеристик поля у вакуумі. Електромагнітне поле у речовині описується системою рівнянь Максвелла-Лоренца

(4.6)

Тут

(4.7)

– вектор зміщення (індукція електричного поля),

(4.8)

– напруженість магнітного поля, ε і μ – відносні, відповідно, діелектрична і магнітна проникності середовища. Співвідношення (4.7), (4.8) разом з законом Ома у диференціальній формі

, (4.9)

що визначає густину струму вільних зарядів у речовині з питомою провідністю σ (струм провідності), називаються матеріальними рівняннями.

Система (4.6) дозволяє повністю описати стан електромагнітного поля (знайти його силові характеристики – вектори , , і ) у речовині, властивості якої визначаються матеріальними рівняннями через значення її констант ε, μ та σ. На відміну від вільного простору, що вважається однорідним, вектори поля на межі розділу середовищ з різними діелектричними і магнітними проникностями їх компоненти повинні задовольняти граничним умовам:

Dn1 – Dn2 = σв, Eτ1 = Eτ2, (4.10)

Bn1 = Bn2, Hτ1 – Hτ2 = jпов. (4.11)

Орт нормалі проведений з першого середовища у друге; – орт, дотичний до поверхні їх розділу, σв – поверхнева густина вільних зарядів, – поверхнева густина струмів провідності.

Потенціали поля у середовищі, рівняння для потенціалів. Густина енер-гії і густина потоку енергії електромагнітного поля у речовині. [2, 3]

Електромагнітні хвилі у речовині. Електронна теорія дисперсії і поглинання електромагнітних хвиль. [2, 3]

Аналогічно до поля у вакуумі, значно спрощується, якщо ввести потенціали поля такі, що

, . (4.12)

Тоді система чотирьох рівнянь (4.6) зводиться до системи двох диференціальних рівнянь другого порядку (рівнянь поля в потенціалах):

(4.13)

які пов’язані між собою калібрувальною умовою Лоренца

, (4.14)

де

(4.15)

– швидкість поширення хвилі.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2 



Реферат на тему: Електромагнітні хвилі у речовині

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок