Головна Головна -> Реферати українською -> Дисертації та автореферати -> ЕВОЛЮЦІЙНІ РІВНЯННЯ З ПСЕВДО-БЕССЕЛЕВИМИ ОПЕРАТОРАМИ

ЕВОЛЮЦІЙНІ РІВНЯННЯ З ПСЕВДО-БЕССЕЛЕВИМИ ОПЕРАТОРАМИ

Назва:
ЕВОЛЮЦІЙНІ РІВНЯННЯ З ПСЕВДО-БЕССЕЛЕВИМИ ОПЕРАТОРАМИ
Тип:
Реферат
Мова:
Українська
Розмiр:
15,33 KB
Завантажень:
78
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7  8  9  10 
Чернівецький національний університет
імені Юрія Федьковича
ЛЕНЮК ОЛЕГ МИХАЙЛОВИЧ
УДК 517.956
ЕВОЛЮЦІЙНІ РІВНЯННЯ З
ПСЕВДО-БЕССЕЛЕВИМИ ОПЕРАТОРАМИ
01.01.02 – диференціальні рівняння
АВТОРЕФЕРАТ
дисертації на здобуття наукового ступеня
кандидата фізико-математичних наук
Чернівці – 2008
Дисертацією є рукопис.
 
Робота виконана на кафедрі диференціальних рівнянь Чернівецького
національного університету імені Юрія Федьковича, Міністерство
освіти і науки України.
 
Науковий керівник – доктор фізико-математичних наук, професор
ГОРОДЕЦЬКИЙ Василь Васильович, Чернівецький
національний університет імені Юрія Федьковича, завіду-
вач кафедри алгебри та інформатики.
Офіційні опоненти: доктор фізико-математичних наук, професор
СЛЮСАРЧУК Василь Юхимович, Національний
університет водного господарства та природокористування
(м. Рівне), професор кафедри вищої математики;
кандидат фізико-математичних наук, БОКАЛО Микола
Михайлович, Львівський національний університет імені
Івана Франка, доцент кафедри диференціальних рівнянь.
Захист відбудеться ''_____'' _____________ 2008 р. о 14 год. на засі-
данні спеціалізованої вченої ради К 76.051.02.
З дисертацією можна ознайомитися у бібліотеці Чернівецького національного університету імені Юрія Федьковича (58012, м.Чернівці, вул. Лесі Українки, 23).
Автореферат розісланий ''____'' ___________ 2008 р.
Вчений секретар спеціалізованої вченої ради Бігун Я.Й.
ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ
Актуальнiсть теми. Останнi десятилiття інтенсивно розвивається теорiя псевдодиференцiальних операторiв (ПДО), якi формально можна подати у виглядi $F_{\sigma\tox}^{-1}[a(t,x;\sigma)F_{x\to\sigma}]$, $\{x,\sigma\}\subset \mathbb{R}^{n}$, $t>0$, де $a$\,-- функцiя (символ), що задовольняє певнi умови, $F$, $F^{-1}$\,-- пряме та обернене перетворення Фур'є. Iмпульсом для такого розвитку послужив той факт, що ПДО тiсно пов'язанi з важливими задачами аналiзу i сучасної математичної фiзики. Серед нових роздiлiв цiєї теорії особливої уваги заслуговує теорiя рiвнянь з ПДО, побудованими за негладкими однорiдними символами. Випадок однорiдних символiв має важливi застосування в теорiї випадкових процесiв. Теорiя ПДО з негладкими символами тiсно пов'язана також iз сучасною теорією фракталiв.
Дослiдженням ПДО та задачi Кошi для еволюцiйних рiвнянь з ПДО займалось багато математикiв, використовуючи рiзнi методи i пiдходи (M. Nagase, R. Shinkai, C. Tsutsumi, М.А. Шубiн, М. Тейлор, Л. Хермандер, Ю.А. Дубiнський, Б.Й. Пташник та iн.); при цьому одержанi значнi i важливi результати про розв'язнiсть задачi Кошi у рiзних функцiональних просторах.
У теорiї задачi Кошi для параболiчних псевдо диференціальних рiвнянь (ППДР) на теперiшнiй час добре вiдомi результати про будову та оцiнки фундаментальних розв'язкiв задачi Кошi (ФРЗК), за допомогою яких одержанi iнтегральнi зображення розв'язкiв. Якщо символ не залежить вiд $t$, $x$ (тобто $a=a(\sigma)$), то задача Кошi коректно розв'язна в просторi узагальнених функцiй типу розподiлiв; при цьому розв'язок подається у виглядi згортки ФРЗК з початковою умовою, яка є узагальненою функцiєю. Дослiдженi якiснi властивостi розв'язкiв ППДР та систем таких рiвнянь (зокрема, поведiнка розв'язкiв при необмеженому зростаннi часової змiнної, їх невiд'ємнiсть, стiйкiсть за Ляпуновим, теореми типу Лiувiлля).
Цi результати є науковим надбанням ряду вiтчизняних та зарубiжних математикiв, зокрема, С.Д. Ейдельмана, Я.М. Дрiня, М.В. Федорюка, А.Н. Кочубея, В.В. Городецького, В.А. Лiтовченка, Р.Я. Дрiня та iн.
До псевдодиференцiальних рiвнянь формально можна вiднести i сингулярнi еволюцiйнi рiвняння з оператором Бесселя ($B$-параболiчнi рiвняння), який вироджується по певнiй просторовiй змiннiй, а саме рiвняння при цьому вироджується на межi областi, оскiльки оператор Бесселя $B_{\nu}=\frac{d^2}{dx^2}+\frac{2\nu+1}{x}\frac{d}{dx}$, $\nu>-\frac{1}{2}$, можна визначити за допомогою спiввiдношення $B_{\nu}\varphi=-F_{B_{\nu}}^{-1}[\sigma^2F_{B_{\nu}}[\varphi]]$, де $F_{B_{\nu}}$, $F_{ B_{\nu}}^{-1}$\,-- пряме та обернене перетворення Бесселя, $\varphi$\,-- елемент простору, в якому вказане перетворення визначене.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7  8  9  10 



Реферат на тему: ЕВОЛЮЦІЙНІ РІВНЯННЯ З ПСЕВДО-БЕССЕЛЕВИМИ ОПЕРАТОРАМИ

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок