Головна Головна -> Реферати українською -> Дисертації та автореферати -> НАБЛИЖЕННЯ ОПЕРАТОРАМИ ВАЛЛЕ-ПУССЕНА ФУНКЦІЙ, ВИЗНАЧЕНИХ НА ДІЙСНІЙ ОСІ

НАБЛИЖЕННЯ ОПЕРАТОРАМИ ВАЛЛЕ-ПУССЕНА ФУНКЦІЙ, ВИЗНАЧЕНИХ НА ДІЙСНІЙ ОСІ

Назва:
НАБЛИЖЕННЯ ОПЕРАТОРАМИ ВАЛЛЕ-ПУССЕНА ФУНКЦІЙ, ВИЗНАЧЕНИХ НА ДІЙСНІЙ ОСІ
Тип:
Реферат
Мова:
Українська
Розмiр:
9,34 KB
Завантажень:
399
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6 
НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ
ІНСТИТУТ МАТЕМАТИКИ
СІЛІН Євгеній Сергійович
УДК 517.5
НАБЛИЖЕННЯ ОПЕРАТОРАМИ
ВАЛЛЕ-ПУССЕНА ФУНКЦІЙ,
ВИЗНАЧЕНИХ НА ДІЙСНІЙ ОСІ
01.01.01 — математичний аналіз
Автореферат
дисертації на здобуття наукового ступеня
кандидата фізико-математичних наук
Київ — 2006
Дисертацією є рукопис
Робота виконана в Слов’янському державному педагогічному університеті
Науковий керівник
доктор фізико-математичних наук, професор
РУКАСОВ Володимир Іванович, Слов’янський державний педагогічний університет, ректор.
Офіційні опоненти:
доктор фізико-математичних наук, професор
ЗАДЕРЕЙ Петро Васильович, Київський національний університет технологій та дизайну,завідувач кафедри вищої математики;
кандидат фізико-математичних наук, доцент
ХАРКЕВИЧ Юрій Іліодорович, Волинський державний університет імені Лесі Українки, завідувач кафедри диференціальних рівнянь та математичної фізики.
Провідна установа: Інститут прикладної математики і механіки НАН України (м. Донецьк).
Захист відбудеться "18"квітня 2006 р. о 15 годині на засіданні спеціалізованої вченої ради Д.26.206.01 Інституту математики НАН України за адресою: 01601, м. Київ 4, вул. Терещенківська, 3.
З дисертацією можна ознайомитись у бібліотеці Інституту математики НАН України.
Автореферат розісланий "9" березня 2006 р.
Учениий секретар спеціалізованої вченої ради Романюк А.С.
Загальна характеристика роботи
Актуальність теми. Традиційним апаратом наближення періодичних функцій є тригонометричні поліноми заданого степеня n, зокрема, поліноми, які породжуються лінійними методами підсумовування рядів Фур’є.
Для наближення функцій, які визначені на всій дійсній осі і не є обов’язково періодичними, природним апаратом апроксимації є цілі функції експоненціального типу <. Початки сучасної теорії наближення цілими функціями було покладено роботами С.Н. Бернштейна. Саме йому належить ідея побудови теорії наближення функцій, визначених на дійсній осі, в яку б входила і теорія наближення періодичних функцій. Ця ідея стала дуже важливою для обох теорій упродовж останніх десятиріч вони успішно розвиваються паралельно, взаємно збагачуючи і доповнюючи одна одну.
В 1983 році О.І. Степанець запровадив нову класифікацію періодичних функцій за допомогою мультиплікаторів та зсувів аргументів. Розвиваючи цей напрямок досліджень, О.І. Степанець у 1988 році запровадив класи функцій, локально сумовних на дійсній осі, які не є обов’язково періодичними і містять класи періодичних функцій як частинний випадок. У 1998 році О.І. Степанець розглянув класи функцій, локально сумовних на дійсній осі, які є узагальненням запроваджених у 1996 році множин -інтегралів 2-періодичних функцій .
На класах на цей час були розв’язані задачі теорії наближення майже в тому ж обсязі, що і на класах 2-періодичних функцій Природним чином постало питання отримання на нових класах неперіодичних аналогів результатів, які відомі для класів
Зв’язок роботи з науковими програмами, планами, темами. Робота виконана на кафедрі математичного аналізу Слов’янського державного педагогічного університету згiдно з науково-дослiдною темою: "Класифікаційні методи теорії наближення функцій і теорії крайових задач", номер державної реєстрацiї .
Мета i завдання дослідження.
Метою роботи є знаходження асимптотичних формул для верхніх граней відхилень операторів Валле-Пуссена на класах неперервних функцій і , а також одержання асимптотичних законів спадання функціоналів, що характеризують задачу про одночасне наближення -інтегралів функцій з класів S і H за допомогою операторів Валле-Пуссена.
Об’єктом дослідження є класи і .
Предметом дослідження є апроксимативні характеристики операторів Валле-Пуссена на класах і , а також функціонали, що характеризують задачу про одночасне наближення -інтегралів функцій класів S і H за допомогою операторів Валле-Пуссена.
Задачі дослідження.
1. На класах у випадку, коли вони містять функції малої гладкості, отримати асимптотичні (при ) рівності для величин верхніх граней
(1)
де N— це або одинична куля S простору істотно обмежених функцій, або клас H, V,c(f,) — оператор Валле-Пуссена функції f.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6 



Реферат на тему: НАБЛИЖЕННЯ ОПЕРАТОРАМИ ВАЛЛЕ-ПУССЕНА ФУНКЦІЙ, ВИЗНАЧЕНИХ НА ДІЙСНІЙ ОСІ

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок