Головна Головна -> Реферати українською -> Дисертації та автореферати -> МНОЖИННИЙ ПІДХІД ДО ОПИСУ НЕВИЗНАЧЕНОСТІ В МАТЕМАТИЧНОМУ МОДЕЛЮВАННІ

МНОЖИННИЙ ПІДХІД ДО ОПИСУ НЕВИЗНАЧЕНОСТІ В МАТЕМАТИЧНОМУ МОДЕЛЮВАННІ

Назва:
МНОЖИННИЙ ПІДХІД ДО ОПИСУ НЕВИЗНАЧЕНОСТІ В МАТЕМАТИЧНОМУ МОДЕЛЮВАННІ
Тип:
Реферат
Мова:
Українська
Розмiр:
15,89 KB
Завантажень:
5
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7  8  9  10 
Національна академія наук України
Інститут кібернетики імені В.М. Глушкова
ДОНЧЕНКО Володимир Степанович
УДК 519.7:519.21
МНОЖИННИЙ ПІДХІД ДО ОПИСУ НЕВИЗНАЧЕНОСТІ В МАТЕМАТИЧНОМУ МОДЕЛЮВАННІ
01.05.02 – математичне моделювання та обчислювальні методи
Автореферат
дисертації на здобуття наукового ступеня
доктора фізико-математичних наук
Київ 2007


Дисертацією є рукопис.
Робота виконана на кафедрі системного аналізу та теорії прийняття рішень факультету кібернетики Київського національного університету імені Тараса Шевченка.
Науковий
консультант: | доктор фізико-математичних наук, професор
Кириченко Микола Федорович,
Інститут кібернетики ім. В.М. Глушкова
НАН України,
провідний науковий співробітник |
Офіційні опоненти: | доктор фізико-математичних наук, професор,
академік НАН України
Королюк Володимир Семенович,
Інститут математика НАН України, |
доктор фізико-математичних наук, професор
Кнопов Павло Соломонович,
Інститут кібернетики ім. В.М. Глушкова
НАН України,
завідувач відділу математичних методів
дослідження операцій, |
доктор фізико-математичних наук, професор
Сопронюк Федір Олексійович,
Чернівецький національний університет
ім. Ю. Федьковича, факультет комп’ютерних наук,
декан |
Провідна установа: | Інститут космічних досліджень НАН України
та НКАУ, відділ системного аналізу та керування,
м. Київ |
Захист відбудеться “ 8 ” червня 2007 р. об 11 годині на засіданні спеціалізованої вченої ради Д 26.194.02 при Інституті кібернетики
ім. В.М. Глушкова НАН України за адресою:
03680, МСП, Київ-187, проспект Академіка Глушкова, 40.
З дисертацією можна ознайомитися в науково-технічному архіві інституту
Автореферат розісланий | “ 4 “ травня 2007 р. | Учений секретар
спеціалізованої вченої ради | СИНЯВСЬКИЙ В.Ф. |


Загальна характеристика роботи
Актуальність теми. Розвиток та впровадження інформаційних техно-логій, систем штучного інтелекту неможливе без адекватного розвитку та вдосконалення методів математичного моделювання. Повною мірою це стосу-ється засобів математичного опису та моделювання невизначеності: від засобів статистичної обробки інформації, до обробки зображень, обробки мовних сигналів, теорії оптимального керування, засобів прогнозу особливо в умовах модельної невизначеності, систем підтримки прийняття рішень з відповідними областями застосування та технологічними засобами реалізації. Загалом, питання невизначеності в прикладних математичних дослідженнях є принци-повим і визначає, власне, метод дослідження конкретних систем та об’єктів. Тому дослідження, пов’язані з вивченням природи невизначеності та розвитком засобів її математичного моделювання, набувають особливої актуальності.
Довгий час класичними методами, які використовувалися для опису невизначеності в математичному моделюванні об’єктів, були статистичні (теоретико імовірнісні) методи та детерміновані в тому числі у вигляді методів розв’язку „обернених” задач. Важливим у розвитку засобів опису невизначеності та побудовою адекватних засобів розв’язання практичних задач були 50–60-ті роки ХХ століття, коли бурхливий розвиток техніки, проми-слових технологій, та широке впровадження обчислювальної техніки в матема-тичному моделюванні призвів до появи й формування майже одночасно декількох нових напрямків опису та врахування невизначеності. Серед них є
· техніка псевдообернення за Penrose’ом (1955 р.), як засіб розв’язання оберне-них задач, у тому числі в наближеному вигляді, та наступний бурхливий розвиток запропонованого напрямку; власне, це було „оптимізаційне” пред-ставлення псевдообернення після його появи в „алгебраїчному” варіанті, запропонованому Moore’ом в 1920 р.;
· теорія нечітких за L. Zadeh підмножин (1965 р.) та подальший розвиток цієї теорії в роботах A.Kuafmann”а, N. Kasabov’а, Р. Беллмана та Л.Заде;
· інженерний засіб обробки зображень, запропонований Hough’ом (пере-творення Гока) (1962 р.) та оформлений у вигляді патенту, з подальшим його розвитком в роботах Rosеnfeldа, Duda&Hart’a, Ballard’а, Merlin &.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7  8  9  10 



Реферат на тему: МНОЖИННИЙ ПІДХІД ДО ОПИСУ НЕВИЗНАЧЕНОСТІ В МАТЕМАТИЧНОМУ МОДЕЛЮВАННІ

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок