Головна Головна -> Реферати українською -> Логіка -> Логіко-дедуктивне обґрунтування програмування

Логіко-дедуктивне обґрунтування програмування

Назва:
Логіко-дедуктивне обґрунтування програмування
Тип:
Реферат
Мова:
Українська
Розмiр:
12,08 KB
Завантажень:
105
Оцінка:
 
поточна оцінка 5.0


Скачати цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7 
Реферат на тему:
Логіко-дедуктивне обґрунтування програмування


У міру нагромадження й ускладнення наукових знань виникла необхідність їхнього упорядкування, структурної побудови, установлення зв'язків між елементами, розкриття їхніх основних принципів, понять, надання цим знанням строгої науковості й визначеності.
У вирішенні цих питань необхідні системний аналіз і структурна побудова наукового знання. Вперше в історії науки системно-структурний аналіз у діяльності людського мислення і його кодування провів Аристотель. Він сформулював закони правильного мислення – закони логіки – і вперше у вигляді системи наукового знання побудував формальну логіку. До Аристотеля існували окремі логічні фрагменти і положення, але не було точної, стрункої системи логічної побудови. Сам Аристотель говорить про це: "Що стосується вчення про умовиводи, то ми не знайшли нічого такого, що було б сказано до нас, а мали самі створювати його з більшою затратою часі та сил" [1, 593].
Формальна логіка стала теоретичною основою в побудові дедуктивних теорій і її вищої форми – форми побудови аксіоматичних систем. Аксіоматичні системи пройшли три етапи розвитку: конкретно змістовний, абстрактно змістовний або напівформальний і формальний. Зразком першої аксіоматичної системи є "Начала" Евкліда, механіка Ньютона, аналітична механіка Лагранжа; абстрактно змістовну аксіоматику являє собою аксіоматика арифметики Пеано; зразком третьої аксіоматичної системи є аксіоматика математичної логіки, формальної арифметики, теорії ймовірностей А.Н. Колмогорова. Усі ці види аксіоматичних систем покликані до життя потребами наукового знання, що розвивається, а також для розв'язання внутрішніх протиріч, що виникають у процесі розвитку дедуктивних наук.
Конкретно змістовна аксіоматика будується на інтуїтивній основі. Несуворий підхід існує і до принципів побудови дедуктивних наук (несуперечності, повноти, незалежності), а також і до ідеї доказу. Але ця перша аксіоматична система сприяла систематизації наукового знання, являла собою цілісне, закінчене наукове знання. Аксіоматика Евкліда очистила геометричну теорію від повторів, протиріч і представила всю теоретичну систему в найбільш простій і доказовій формі. Але ця аксіоматика має ряд недоліків: вона "схоплює" найпростіші відносини між предметами і явищами об'єктивної дійсності, віднесена лише до одних геометричних об'єктів, до однієї предметної галузі, має слабку синтетичність. Основою цієї аксіоматичної системи є формальна логіка Аристотеля.
З розвитком математики і теоретичного природознавства статична аксіоматична система Евкліда перестала задовольняти подальші вимоги. З уведенням змінної величини й відкриттям неевклідових геометрій необхідною стала така логічна операція, яка виконувала б побудову математичної теорії на абстрактно змістовній основі й мала б інтерпретацію. Інтерпретації можуть бути різного роду і мати різний зміст, але елементи аксіоматичної системи далекі від конкретної змістовної основи і мають широкий абстрактний зміст. Так, при побудові абстрактно змістовної аксіоматичної системи Д. Гільберт указує на повну абстрактність елементів цієї системи: "Ми, - говорить він, – мислимо три різні системи речей: речі першої системи ми називаємо точками й позначаємо А, В, С...; речі другої системи ми називаємо прямими та позначаємо а, в, с...; речі третьої системи ми називаємо площинами і позначаємо" [2, 56].
Гілберт уводить різного роду відносини між елементами системи: "безперервність", "паралельність", "приналежність", "конкретність" або "співмірність". У них фіксуються абстрактні відносини, що належать до різних теоретичних систем. Така аксіоматична система стала більш ємною, синтетичною і широко застосовуваною до інтерпретацій різної предметної галузі. Аксіоматика Д.Гільберта будувалася на математичній логіці; принципи несуперечності, незалежності, повноти, можливості розв'язання, на відміну від конкретно змістовної аксіоматики, також доводяться, хоча на змістовному, семантичному рівні.

Завантажити цю роботу безкоштовно
Пролистати роботу: 1  2  3  4  5  6  7 



Реферат на тему: Логіко-дедуктивне обґрунтування програмування

BR.com.ua © 1999-2017 | Реклама на сайті | Умови використання | Зворотній зв'язок